Seminario del 2025

Understanding quantum magnetism in two-dimensional systems represents a lively branch in modern condensed-matter physics. In the presence of competing super-exchange couplings, magnetic order is frustrated and can be suppressed down to zero temperature. Still, capturing the correct nature of the exact ground state is a highly complicated task, since energy gaps in the spectrum may be very small and states with different physical properties may have competing energies. Here, we introduce a variational Ansatz for two-dimensional frustrated magnets by leveraging the power of representation learning. The key idea is to use a particular deep neural network with real-valued parameters, a so-called Transformer, to map physical spin configurations into a high-dimensional feature space. Within this abstract space, the determination of the ground-state properties is simplified and requires only a shallow output layer with complex-valued parameters. We illustrate the efficacy of this variational Ansatz by studying the ground-state phase diagram of the Shastry-Sutherland model, which captures the low-temperature behavior of SrCu2(BO3)2 with its intriguing properties. With highly accurate numerical simulations, we provide strong evidence for the stabilization of a spin-liquid between the plaquette and antiferromagnetic phases. In addition, a direct calculation of the triplet excitation at the Γ point provides compelling evidence for a gapless spin liquid. Our findings underscore the potential of Neural-Network Quantum States as a valuable tool for probing uncharted phases of matter, and open up new possibilities for establishing the properties of many-body systems.

indietro