Questo sito utilizza solo cookie tecnici per il corretto funzionamento delle pagine web e per il miglioramento dei servizi.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Archivio 2025
Giugno
30
2025
Carlo Collari
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario interdisciplinare
In this talk we will introduce uberhomology, a combinatorially defined homology theory for simplicial complexes. After proving some of its properties, we’ll show how this invariant is related to dominating sets and to the Mayer-Vietoris spectral sequence. We will conclude with some open questions and problems. All results are joint work with L. Caputi and D. Celoria.
Giugno
27
2025
Gianluca Paolini
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, interdisciplinare, logica
An uncountable $\aleph_1$-free group can not admit a Polish group topology but an uncountable $\aleph_1$-free abelian group can, as witnessed e.g. by the Baer-Specker group $\mathbb{Z}^\omega$, in fact, more strongly, $\mathbb{Z}^\omega$ is separable. In this paper we investigate $\aleph_1$-free abelian non-Archimedean Polish groups. We prove two main results. The first is that there are continuum many separable (and so torsionless, and so $\aleph_1$-free) abelian non-Archimedean Polish groups which are not topologically isomorphic to product groups and are pairwise not continuous homomorphic images of each other. The second is that the following four properties are complete co-analytic subsets of the space of closed abelian subgroups of $S_\infty$: separability, torsionlessness, $\aleph_1$-freenees and $\mathbb{Z}$-homogeneity.
Giugno
27
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
26
2025
Miguel Urbano
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
We substantially improve in two scenarios the current state-of-the-art modulus of continuity for weak solutions to the $N-$dimensional, two-phase Stefan problem featuring a $p-$degenerate diffusion: for $p=N\geq 3$, we sharpen it to
$\boldsymbol{\omega}(r) \approx \exp (-c| \ln r|^{\frac1N})$; for $p>\max\{2,N\}$, we derive an unexpected H\"older modulus. This is a joint work with Ugo Gianazza and Naian Liao.
Giugno
26
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
25
2025
Modeling, analysis and computation are three pillars of computational science. We discuss them within the context of liquid crystal networks (LCNs). These materials couple a nematic liquid crystal with a rubbery material. When actuated with heat or light, the interaction of the liquid crystal with the rubber creates complex shapes. Thin bodies of LCNs are natural candidates for soft robotics applications. We start from the classical 3D trace energy formula and derive a reduced 2D membrane energy as the formal asymptotic limit of vanishing thickness, including both stretching and bending energies, and characterize the zero energy deformations. We design a sound numerical method and discuss its Gamma convergence. We present computations showing the geometric effects that arise from liquid crystal defects as well as computations of nonisometric origami within and beyond theory. This work is joint with L. Bouck, G. Benavides, and S. Yang.
Giugno
25
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Daniel Stilck Franca
Information‐theoretic Generalization Bounds for Learning from Quantum Data
Seminario di fisica matematica
Learning tasks are playing an increasingly central role in quantum information and computation from fundamental problems like state discrimination and metrology to quantum PAC learning and the recently proposed “shadow” variants of state tomography. Yet these various strands of quantum learning theory have largely evolved in isolation.
In this talk, we introduce a unified mathematical framework for quantum learning based on classical–quantum training data and show how to bound a quantum learner’s expected generalization error on new data. Our bounds are expressed in terms of classical and quantum information theoretic quantities that capture how strongly the learner’s hypothesis depends on the specific training data. To derive them, we develop non commutative analogues of the decoupling lemmas underlying recent classical information theoretic generalization bounds, drawing on tools from quantum optimal transport and quantum concentration inequalities.
This framework subsumes and yields intuitive generalization bounds for a variety of quantum learning scenarios including quantum state discrimination, PAC learning of quantum states or classical functions, and quantum parameter estimation laying the groundwork for a unified, information theoretic perspective on quantum learning.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Matthias C. Caro
Interactive proofs for verifying (quantum) learning and testing
Seminario di fisica matematica
We consider the problem of testing and learning from data in the presence of resource constraints, such as limited memory or weak data access, which place limitations on the efficiency and feasibility of testing or learning. In particular, we ask the following question: Could a resource-constrained learner/tester use interaction with a resource-unconstrained but untrusted party to solve a learning or testing problem more efficiently than they could without such an interaction? In this work, we answer this question both abstractly and for concrete problems, in two complementary ways: For a wide variety of scenarios, we prove that a resource-constrained learner cannot gain any advantage through classical interaction with an untrusted prover. As a special case, we show that for the vast majority of testing and learning problems in which quantum memory is a meaningful resource, a memory-constrained quantum algorithm cannot overcome its limitations via classical communication with a memory unconstrained quantum prover. In contrast, when quantum communication is allowed, we construct a variety of interactive proof protocols, for specific learning and testing problems, which allow memory constrained quantum verifiers to gain significant advantages through delegation to untrusted provers. These results highlight both the limitations and potential of delegating learning and testing problems to resource-rich but untrusted third parties.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
David Sutter
Uhlmann’s theorem for relative entropies
Seminario di fisica matematica
Uhlmann's theorem states that, for any two quantum states ρAB and σA, there exists an extension σAB of σA such that the fidelity between ρAB and σAB equals the fidelity between their reduced states ρA and σA. In this work, we generalize Uhlmann's theorem to α-Rényi relative entropies for α∈[12,∞], a family of divergences that encompasses fidelity, relative entropy, and max-relative entropy corresponding to α=12, α=1, and α=∞, respectively.
Based on joint work with Giulia Mazzola and Renato Renner.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Zoe Holmes
Pauli and Majorana Propagation methods for classically simulating quantum circuits
Seminario di finanza matematica
Simulating quantum circuits classically is in general a hard task. However, certain families of quantum circuits may be practically or even provably efficiently simulable by use of specialized classical algorithms. In this talk, we will cover "Pauli propagation" which has recently been shown to enable efficient classical simulation of expectation values in quantum circuits and a wide range of noise-free quantum circuits. Appreciating the strengths and weaknesses of this simulation method, and how it can be efficiently combined with other classical and quantum subroutines, will help point towards promising applications of quantum devices. We will end by discussing a generalization of this approach to Fermionic systems opening up new applications in quantum chemistry and material science. This talk will give an overview of the following works: arxiv:2308.09109, arXiv:2408.12739, arXiv:2409.01706, arXiv:2411.19896, arXiv:2501.13101, arXiv:2503.18939.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Sonia Mazzucchi
A swap test photonic integrated circuit for determining quantum entanglement
Seminario di fisica matematica
Entanglement is a fundamental resource in quantum computation and quantum communication, but it is potentially affected by decoherence phenomena that make it necessary to introduce
appropriate tests to certify and quantify the degree of entanglement of a quantum state. In this talk. I will show how a photonic integrated circuit designed to implement the swap test algorithm can be adapted to an efficient entanglement witness for both pure and mixed bipartite states.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Antonio Anna Mele
Effect of noise in typical quantum circuits
Seminario di fisica matematica
Motivated by realistic hardware considerations of the pre-fault-tolerant era, we comprehensively study the impact of uncorrected noise on typical quantum circuits. We first show that any noise `truncates’ most quantum circuits to effectively logarithmic depth, in the task of estimating observable expectation values. We then prove that quantum circuits under any non-unital noise exhibit lack of barren plateaus for cost functions composed of local observables. But, we also design an efficient classical algorithm to estimate observable expectation values of typical quantum circuits within any target constant accuracy, in any circuit architecture. Taken together, our results showcase that, unless we carefully engineer the circuits to take advantage of the noise, it is unlikely that noisy quantum circuits provide any quantum advantage for algorithms that output observable expectation value estimates, like many variational quantum machine learning proposals.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Eric Anschuetz
A Unified Theory of Quantum Neural Network Loss Landscapes
Seminario di fisica matematica
Classical neural networks with random initialization famously behave as Gaussian processes in the limit of many neurons, which allows one to completely characterize their training and generalization behavior. While there are settings where quantum neural networks (QNNs) have also been shown to behave as Gaussian processes, there exist known counterexamples to this behavior. We here prove that QNNs and their first two derivatives instead generally form what we call "Wishart processes," where certain algebraic properties of the network determine the hyperparameters of the process. This Wishart process description allows us to, for the first time: give necessary and sufficient conditions for a QNN architecture to have a Gaussian process limit; calculate the full gradient distribution, generalizing previously known barren plateau results; and calculate the local minima distribution of algebraically constrained QNNs. Our unified framework suggests a certain simple operational definition for the "trainability" of a given QNN model using a newly introduced, experimentally accessible quantity we call the "degrees of freedom" of the network architecture.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Andrea Mari
Can AI learn the best way to use a noisy quantum computer?
Seminario di fisica matematica
We explore the broad question posed in the title from different perspectives. We show how a classical neural network can be trained to optimally embed features into a quantum system and to optimally extract information from it. We review the concept of variational quantum error mitigation, i.e., the idea of variationally optimizing error mitigation strategies. We present recent results demonstrating how classical deep learning models and noisy quantum computers can cooperate to better estimate quantum expectation values. Finally, as a speculative open problem, we propose pushing the core question to its extreme limit: Can AI autonomously decide how to optimally use a noisy quantum computer without hard-coding any specific error-reduction strategy?
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Sofiene Jerbi
Shadows of quantum machine learning and shallow-depth learning separations
Seminario di fisica matematica
In this talk, I will present two recent works related to the question of quantum advantages in machine learning. In the first work, we address a major obstacle to the widespread use of quantum machine learning models in practice: quantum models, even once trained, still require access to a quantum computer in order to be evaluated on new data. To solve this issue, we introduce a class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical. We prove that: (i) this class of models is universal for classically-deployed quantum machine learning; (ii) it does have restricted learning capacities compared to ‘fully quantum’ models, but nonetheless (iii) it achieves a provable learning advantage over fully classical learners, contingent on widely believed assumptions in complexity theory. In the second work, we expand our understanding of where quantum advantages can be found in quantum machine learning, by showing a PAC learning advantage in the realm of shallow-depth circuits. This learning advantage has the particularity that it is unconditional, meaning that we do not need to make assumptions such as the existence of classically hard, quantumly easy, cryptographic functions to show an advantage. The machine learning task we consider is that of learning probability distributions, or generative learning. We design this learning task building on recent results by Bene Watts and Parham on quantum advantages for sampling, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Antonio Macaluso
Limitations and Methodological Pathways in Quantum Unsupervised and Reinforcement Learning
Seminario di fisica matematica
Quantum Machine Learning (QML) has recently been explored as a novel approach to surpass the capabilities of classical methods, although the field remains in its early stages and the outcomes achieved so far are still inconclusive. This talk offers a critical and methodologically grounded perspective on current QML approaches, with particular attention to the fundamental limitations of classical machine learning and the ways in which quantum-enhanced models may be designed to address these challenges. Recent developments in unsupervised and reinforcement learning serve as illustrative examples to examine how quantum formulations, tailored to the structure of specific problems, can yield algorithmic and representational advantages. Methodological aspects such as model design, problem encoding, and hybrid integration are emphasized, along with a discussion of current limitations in quantum computing, including hardware constraints and the lack of mature, task-specific quantum design principles. The talk concludes with reflections on how these insights may inform the development of more robust and effective QML methodologies.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Jason Pereira
Out-of-distribution generalisation for learning quantum channels with low-energy coherent states
Seminario di fisica matematica
Investigating the input-output relations of a quantum process can be seen as a learning problem. For instance, we could wish to find the optimal parameters for some quantum device that let it best mimic our target process, or we could simply wish to construct the best possible mathematical model of the process. Experimentally, we send probes through the quantum channel and use the outputs as our training set.
When learning the action of a continuous variable (CV) quantum process in this way, there will often be some restriction on the input states used. One experimentally simple way to probe CV channels is using low-energy coherent states. Learning a quantum channel in this way presents difficulties, since two channels may act similarly on low energy inputs but very differently for high energy inputs. They may also act similarly on coherent state inputs but differently on non-classical inputs. Extrapolating the behaviour of a channel for more general input states from its action on the far more limited set of low energy coherent states is a case of out-of-distribution generalisation. To be sure that such generalisation gives meaningful results, one needs to relate error bounds for the training set to bounds that are valid for all inputs. We show that for any pair of channels that act sufficiently similarly on low energy coherent state inputs, one can bound how different the input-output relations are for any (high energy or highly
non-classical) input. This proves out-of-distribution generalisation is always possible for learning quantum channels using low energy coherent states.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Armando Angrisani
On the interplay between noise, scrambling and classical simulation of quantum systems
Seminario di fisica matematica
Simulating arbitrary quantum dynamics with classical algorithms is widely believed to be intractable. Yet, by exploiting the structure of certain restricted settings, specialized classical methods can succeed. One particularly promising family - Pauli propagation - recasts simulation in the Pauli basis and often delivers rigorous runtime and error guarantees.
At the heart of these guarantees lie two ingredients: the presence of local noise, which dampens long-range interactions, and a degree of “scrambling” in the circuit’s gates.
In this talk, we will present our recent results on applying Pauli propagation to both noisy and noiseless circuits. Along the way, we’ll discuss to what extent noise and scrambling influence simulability - and what that tells us about the necessary resources for quantum advantage.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Filippo Girardi
Trained quantum neural networks and Gaussian processes
Seminario di fisica matematica
We study quantum neural networks made by parametric one-qubit gates and fixed two-qubit gates in the limit of infinite width, where the generated function is the expectation value of the sum of single-qubit observables over all the qubits. First, we prove that the probability distribution of the function generated by the untrained network with randomly initialized parameters converges to a Gaussian process whenever each measured qubit is correlated only with few other measured qubits. Then, we analytically characterize the training of the network via gradient descent with square loss on supervised learning problems. In particular, as long as the network is not affected by barren plateaus, the trained network can perfectly fit the training set and that the probability distribution of the function generated after training still converges in distribution to a Gaussian process, also in the presence of the statistical noise of the measurement at the output of the network. For finite size circuits, we make the convergence quantitative in terms of the Wasserstein distance of order 1.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Daniele Ottaviani
EuroQHPC-I and QEC4QEA: role of Italy into the european HPC-QC ecosystem
Seminario di fisica matematica
Italy is at the forefront of shaping the European HPC-QC ecosystem, playing a key role in two major initiatives: EuroQHPC-I and QEC4QEA. As one of the selected hosting entities for a European quantum computer, Italy is set to pioneer the integration of quantum computing with high-performance computing (HPC). This integration, conducted alongside other selected hosting entities, will mark a significant step toward the hybrid computing architectures of the future.
Simultaneously, Italy has been chosen to lead Europe’s first Center of Excellence in Quantum Computing, QEC4QEA. This initiative will drive the development of the first HPC-QC applications, accelerating the adoption of quantum technologies in scientific and industrial domains. By spearheading both infrastructure deployment and software innovation, Italy is in pole position to build the future European HPC-QC ecosystem, reinforcing its leadership in quantum and high-performance computing.
Giugno
dal giorno
25/06/2025
al giorno
27/06/2025
25/06/2025
al giorno
27/06/2025
Angela Rosy Morgillo
Quantum optical classifier with superexponential speedup
Seminario di fisica matematica
Cat or dog? Can a Hong-Ou-Mandel interferometer tell the difference? This talk presents a quantum optical method for binary classification that recognizes patterns without the need for image reconstruction. By encoding both data and model parameters into single-photon states and leveraging two-photon interference, the system classifies patterns directly through coincidence rates. Acting as a quantum analogue of a classical neuron, it operates—once trained—with constant O(1) resource complexity, achieving a superexponential speedup over its classical counterpart.
Giugno
24
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
23
2025
Giugno
23
2025
Eric Anschuetz
Seminario di fisica matematica, interdisciplinare
We show a surprising relation between quantum learning theory and algorithmic hardness. We demonstrate that finding the ground state of certain sparse disordered quantum systems is average-case hard for "Lipschitz" quantum algorithms if there exists an efficient, local learning algorithm---such as the classical shadows algorithm---for estimating the energy of a state of the system. A corollary of our result is that both $O(\log(n))$-depth variational quantum algorithms and $O(\log(n))$-time Lindbladian dynamics fail to find the near-ground state of these systems, matching known bounds for classical disordered systems. To achieve this, we prove that there exists a topological property of certain quantum systems that we call the quantum overlap gap property (QOGP). We then show that systems which exhibit this topological property in their low-energy space exhibit a form of average-case algorithmic hardness. We prove that the QOGP is satisfied for a sparsified variant of the quantum $p$-spin model, giving the first known average-case hardness-of-approximation result for quantum algorithms in finding the ground state of a non-stoquastic, noncommuting quantum system. Conversely, we show that the Sachdev--Ye--Kitaev (SYK) model does not exhibit the QOGP, consistent with previous evidence that the model is rapidly mixing at low temperatures.
Giugno
23
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
19
2025
Giulio Galise, Sapienza Università di Roma
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
We consider linear stable operators L of order 2s whose spectral measure is positive only in a relative open subset of the unit sphere, the aim being to present Liouville type results, in a half space, for the inequality -Lu ≥ u^p. In particular we will show that u≡0 is the only nonnegative solution for 1 ≤ p ≤ (N+s)/(N-s). The optimality of the exponent (N+s)/(N-s) will also be discussed. Based on a joint work with I. Birindelli and L. Du (Sapienza Università di Roma).
Giugno
19
2025
Bruce Kleiner (NYU Courant)
Seminario di analisi matematica
Giugno
19
2025
Valentina Ros
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Complex systems tend to equilibrate slowly, exhibiting out-of-equilibrium dynamics over a broad range of timescales. A key theory challenge is to understand the features of this out-of-equilibrium behavior from the properties of the attractors of the system’s dynamical equations. Mean-field theories of spin glass dynamics offer elegant examples of this, linking phenomena such as aging to the properties of the stationary points of the underlying free-energy landscape (which are attractors of the dynamics). However, these insights apply mainly to conservative systems. In recent years, there has been growing interest in extending these ideas to high-dimensional non-conservative systems, motivated by neural networks and theoretical ecology. In this talk, I will present a simple model of a high-dimensional system with non-reciprocal interactions, whose chaotic, out-of-equilibrium dynamics can be analyzed analytically at long times. I will discuss its dynamical phase diagram and compare it to the statistical distribution of the many, unstable equilibria of the dynamical equations. This comparison challenges the common assumption that chaotic dynamics in non-conservative settings can be understood from equilibria alone. The results rely on a combination of two analytical techniques, Dynamical Mean-Field Theory and the Kac-Rice formalism, and are presented in arXiv:2503.20908.
Giugno
19
2025
Giugno
18
2025
Tomas Lasic Latimer
Seminario di fisica matematica
stract: I discuss recent work [1, 2] on finding an accurate asymptotic approximation of orthogonal polynomials whose measure is supported on the
discrete q-lattice. In searching for these asymptotic results, deep connections between q-difference calculus, the Riemann-Hilbert problem and discrete Painlevé equations are unearthed. We will touch on some of these
connections and how they show themselves in the context of orthogonal polynomials.
References:
[1] N. Joshi, and T. Lasic Latimer, Asymptotics of discrete q-Freud II orthogonal polynomials from the q-Riemann Hilbert problem. Nonlinearity.
36 (8): 3969, 2023.
[2] T. Lasic Latimer, Asymptotics for multiple q-orthogonal polynomials
from the Riemann-Hilbert Problem. arXiv:2502.00335. 2025.
Giugno
18
2025
Giuseppina Guatteri
nell'ambito della serie: STOCHASTICS AND APPLICATIONS - 2025
Seminario di probabilità
We establish a stochastic maximum principle for controlled stochastic differential equations with delay and control-dependent noise, without convexity assumptions on the control space. The cost functional depends on both present and delayed states, modeled via general finite measures. For measures with square-integrable densities, we employ infinite-dimensional reformulation and BSDE techniques; for general measures, we apply anticipated BSDEs and weak convergence methods. We further analyze the case of delay measures with $L^p$-densities ($p \in (1,2)$), deriving a generalized mild backward equation beyond Hilbertian settings.
Giugno
18
2025
Maria Cristina Sardòn (Universidad Politecnica de Madrid)
Seminario di algebra e geometria, fisica matematica
Lie systems are systems of differential equations whose dynamics can be
interpreted as a curve taking values in a finite dimensional Lie algebra
of vector fields, aka a Vessiot Guldberg Lie algebra. This underlying
algebra brings out interesting properties of the system: the general
solution can be described in terms of a nonlinear superposition rule of
particular solutions, the solutions can be interpreted as a certain type
of projective foliation over an appropriate bundle, they also serve for
the analysis of flat g valued connections, among other properties…
Furthermore, there exist different geometric structures that are
compatible with the Vessiot Guldberg Lie algebra, as for example,
Poisson and Dirac structures. We will depict how the different geometric
backgrounds imply important physical applications.
Giugno
17
2025
By solving the infinitesimal Galilean symmetry for the KdV hierarchy, we obtain an explicit expression for the corresponding one-parameter
Lie group, which we call the Galilean symmetry of the KdV hierarchy [1]. As
an application, we establish an explicit relationship between the non-abelian
Born–Infeld partition function and the generalized Brézin–Gross–Witten partition function.
References:
[1] Xu, J., Yang, D.: Galilean symmetry of the KdV hierarchy. J. Lond. Math.
Soc.(2) 111 (2025), no. 2, Paper No. e70075.
Giugno
17
2025
Debora Choinska
Seminario di fisica matematica
Ernst-type equations are elegant reformulations of Einsteins vacuum equations of general relativity when the existence of two commuting Killing vector fields is assumed. Axisymmetric, stationary spacetimes such as rotating black holes and planar gravitational waves are examples of solutions of the Ernst-type equations.
An essential mathematical property of the Ernst-type equations are that they are integrable nonlinear differential equations, in particular, there exists the nonlinear superposition principle for their solutions.
A key focus is the discretizations of the Ernst-type equation (i.e. difference equations that in a continuum limit become Ernst-type equations) that exhibit all the features of integrability including the nonlinear superposition principle. In the literature, one can find two discretisations of this kind.
I will present exact solutions to the discrete equations
Giugno
17
2025
Shannon Abbott
Seminario di fisica matematica
Recently Van Assche (in J. Diff. Equ. Appl. 30, 465-474, 2024) showed the existence and uniqueness of a special solution of a discrete Painleve II equation, which arises in connection with certain orthogonal polynomials on the unit circle, and are expressed explicitly in terms of a ratio of modified Bessel functions. Here we consider a
fixed point iteration on semi-infinite sequences of real numbers in the interval [−1, 1], which converges to this unique solution of discrete Painleve II, and provides an effective numerical scheme for computing these classical solutions.
Giugno
17
2025
Georgios Raptis
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Giugno
16
2025
Category theory was initially developed to address some structural questions in algebraic topology. Shortly after it was extended to algebraic geometry, logic, universal algebra, and more recently, theoretical computer science. Each of these subjects was heavily influenced by category theory, and in turn, the development of category theory was prominently shaped by the strucures and problems arising in these fields.
In the past few years there has been a growing interest in applying categorical techniques to fields such as probability, statistics and information theory, to study their structures and to find patterns in their techniques. Perhaps surprisingly, it turns out that these fields present a rich and principled structure when addressed categorically, with functors and universal properties arising everywhere.
However, most of the time, new category theory is needed to study these subjects, as they are quite far from the algebra and geometry for which category theory was initially developed.
Two of the current most prolific environments to study probability categorically are Markov categories and dagger categories. In this talk we will give an introduction to both, show their similarities, differences and connections, and use them to prove some core theorems of probability.
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Lauro Silini
Relazione all'interno del convegno: Three Days in Sub-Riemmanian Geometry
Seminario di analisi matematica
This talk is about a quantitative stability result for geodesic spheres in rank-one symmetric spaces of non-compact type — including real, complex, quaternionic, and octonionic hyperbolic spaces. These spaces have negatively pinched sectional curvature, whose minima is distributed according to the underlying algebraic structure. This geometric framework, and in particular the distribution on the tangent space associated with any radial vector fields, plays a central role in the analysis. We show that geodesic spheres are uniformly stable under small volume-preserving $C^1$-perturbations, with perimeter gain controlled by the $W^{1,2}$-norm of the perturbation. As a consequence, we give a quantitative proof that, for small volumes, geodesic spheres are the unique isoperimetric regions.
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Alessandro Socionovo
Relazione all'interno del convegno: Three Days in Sub-Riemmanian Geometry
Seminario di analisi matematica
We present the first examples of nonsmooth sub-Riemannian length minimizing curves. The length minimizer with the lowest regularity within these examples is of class $C^2\setminus C^3$. The singularity is at a boundary point. The result is sharp in the sense that we can prove that, within these examples, it is not possible to find a minimizer of class $C^1\setminus C^2$. This is a joint work with Y. Chitour, F. Jean, R. Monti, L. Rifford, L. Sacchelli, and M. Sigalotti.
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Manuel Ritoré
Relazione all'interno del convegno: Three Days in Sub-Riemannian Geometry
Seminario di analisi matematica
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Séverine Rigot
Relazione all'interno del convegno: Three Days in Sub-Riemannian Geometry
Seminario di analisi matematica
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Bruce Kleiner (NYU Courant)
Relazione all'interno del convegno: Three Days in Sub-Riemannian Geometry
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Pierre Pansu
Relazione all'interno del convegno: Three Days in Sub-Riemannian Geometry
Seminario di analisi matematica
Giugno
dal giorno
16/06/2025
al giorno
18/06/2025
16/06/2025
al giorno
18/06/2025
Luca Rizzi
Relazione all'interno del convegno: Three Days in Sub-Riemmanian Geometry
Seminario di analisi matematica
Giugno
13
2025
Ilja Gogic
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di analisi matematica
The most basic class of derivations on C*-algebras consists of the inner derivations—those expressible as commutators with elements from the multiplier algebra. A fundamental question in the theory of C*-algebras is to determine which algebras admit only inner derivations. Landmark results by Sakai, Kadison, and Sproston established this property for all von Neumann algebras, simple C*-algebras, and homogeneous C*-algebras. In the separable setting, the problem was completely resolved in 1979 by Akemann, Elliott, Pedersen, and Tomiyama, who showed that a separable C*-algebra has only inner derivations if and only if it is a direct sum of a C*-algebra with continuous trace and a C*-algebra with discrete primitive spectrum.
However, the non-separable case remains largely unsettled—even for 2-subhomogeneous algebras. In 1978, Pedersen posed a unifying question, inspired by the work of Sakai and Kadison: given a C*-algebra, does its local multiplier algebra—defined as the C*-direct limit of the multiplier algebras of its essential closed ideals—admit only inner derivations?
In this talk, we revisit the classical innerness problem for derivations on C*-algebras, highlighting both recent developments and emerging perspectives.
Giugno
11
2025
Micaela Verucchi and Giorgia Franchini (Hipert Lab - Unimore)
Seminario di analisi numerica
The Indy Autonomous Challenge and the Abu Dhabi Autonomous Racing League represent two of the world’s most groundbreaking competitions in autonomous racing. Nearly ten teams from across the globe compete for multimillion-dollar prizes, showcasing autonomous vehicles capable of racing at ever-increasing speeds. The events feature both head-to-head and multi-vehicle scenarios—with three or more cars simultaneously on the track—pushing the boundaries of artificial intelligence and engineering.
Unimore Racing, representing the University of Modena and Reggio Emilia (UNIMORE), has consistently ranked among the top three teams in each competition. Notably, they secured second place in a head-to-head race in Indianapolis, reaching speeds exceeding 290 kph, and claimed victory in Las Vegas during the first four-team autonomous race in history. This ongoing success highlights Unimore Racing’s expertise and the continued evolution of autonomous driving technologies.
Giugno
10
2025
Ricardo H. Nochetto
nell'ambito della serie: SCUBE
Seminario di analisi matematica, analisi numerica, interdisciplinare
Modeling, analysis and computation are three pillars of computational science. We discuss them within the context of liquid crystal networks (LCNs). These materials couple a nematic liquid crystal with a rubbery material. When actuated with heat or light, the interaction of the liquid crystal with the rubber creates complex shapes. Thin bodies of LCNs are natural candidates for soft robotics applications. We start from the classical 3D trace energy formula and derive a reduced 2D membrane energy as the formal asymptotic limit of vanishing thickness, including both stretching and bending energies, and characterize the zero energy deformations. We design a sound numerical method and discuss its Gamma convergence. We present computations showing the geometric effects that arise from liquid crystal defects as well as computations of nonisometric origami within and beyond theory. This work is joint with L. Bouck, G. Benavides, and S. Yang.
Giugno
09
2025
Julián Tachella (CNRS, ENS de Lyon Laboratoire de physique)
Seminario di analisi numerica
This seminar will cover some concepts and recent advances in the emerging field of self-supervised learning methods for solving imaging inverse problems with deep neural networks. Self-supervised learning is a fundamental tool deploying deep learning solutions in scientific and medical imaging applications where obtaining a large dataset of ground-truth images is very expensive or impossible. The seminar will present different self-supervised methods, discuss their theoretical underpinnings and present practical self-supervised imaging applications. Finally, I will discuss my experience developing and collaborating on open-source software for science (https://deepinv.github.io/), and some of the lessons learned along the way.
Giugno
09
2025
Julian Tachella
nel ciclo di seminari: INTERNATIONAL PH.D. SUMMER SCHOOL MATHEMATICS AND MACHINE LEARNING FOR IMAGE ANALYSIS
Seminario di analisi numerica
This seminar will cover some concepts and recent advances in the emerging field of self-supervised learning methods for solving imaging inverse problems with deep neural networks. Self-supervised learning is a fundamental tool deploying deep learning solutions in scientific and medical imaging applications where obtaining a large dataset of ground-truth images is very expensive or impossible. The seminar will present different self-supervised methods, discuss their theoretical underpinnings and present practical self-supervised imaging applications. Finally, I will discuss my experience developing and collaborating on open-source software for science (https://deepinv.github.io/), and some of the lessons learned along the way.
Giugno
09
2025
Matteo Marsili
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Note: this is the second part of a two-part seminar.
AI is progressing at a remarkable speed, but we still don’t have a clear understanding of basic concepts in cognition (e.g. learning, understanding, abstraction, awareness, intelligence, etc).
I shall argue that research focused on understanding how learning machines such as LLMs or deep neural networks do what they do, sidesteps the key issue by defining these concepts from the outset. For example, statistical learning is based on a classification of problems (supervised/unsupervised, classification, regression etc.) and addresses the resulting optimisation problem (maximisation of the likelihood, minimisation of errors, etc). Learning entails first of all detecting what makes sense to be learned 1) from very few samples, and 2) without a priori knowing why that date makes sense. This requires a quantitative notion of relevance that can distinguish data that makes sense from meaningless noise. I will first introduce and discuss the notion of relevance.
Next I will claim that learning differs from understanding, where the latter implies integrating data that make sense into a pre-existing representation. The properties of this representation should be abstract, i.e. independent of the data, precisely because they need to represent data of a widely different domain. This is what enables higher cognitive functions that we do all the time, like drawing analogies and relating data learned independently from widely different domains. Such a representation should be flexible and continuously adaptable if more data or more resources are made available. I will show that such an abstract representation can be defined as the fixed point of a renormalisation group transformation, and it coincides with a model that can be defined from the principle of maximal relevance.
I will provide empirical evidence that the representations of simple neural networks approach this universal model as the network is trained on a broader and broader domain of data.
Overall, the aim of the seminar is to support the idea that an approach to central issues in cognition is also possible studying very simple models and does not necessarily require understanding large machine learning models.
Giugno
09
2025
Giugno
09
2025
Matteo Marsili
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Note: this is the first part of a two-part seminar.
AI is progressing at a remarkable speed, but we still don’t have a clear understanding of basic concepts in cognition (e.g. learning, understanding, abstraction, awareness, intelligence, etc).
I shall argue that research focused on understanding how learning machines such as LLMs or deep neural networks do what they do, sidesteps the key issue by defining these concepts from the outset. For example, statistical learning is based on a classification of problems (supervised/unsupervised, classification, regression etc.) and addresses the resulting optimisation problem (maximisation of the likelihood, minimisation of errors, etc). Learning entails first of all detecting what makes sense to be learned 1) from very few samples, and 2) without a priori knowing why that date makes sense. This requires a quantitative notion of relevance that can distinguish data that makes sense from meaningless noise. I will first introduce and discuss the notion of relevance.
Next I will claim that learning differs from understanding, where the latter implies integrating data that make sense into a pre-existing representation. The properties of this representation should be abstract, i.e. independent of the data, precisely because they need to represent data of a widely different domain. This is what enables higher cognitive functions that we do all the time, like drawing analogies and relating data learned independently from widely different domains. Such a representation should be flexible and continuously adaptable if more data or more resources are made available. I will show that such an abstract representation can be defined as the fixed point of a renormalisation group transformation, and it coincides with a model that can be defined from the principle of maximal relevance.
I will provide empirical evidence that the representations of simple neural networks approach this universal model as the network is trained on a broader and broader domain of data.
Overall, the aim of the seminar is to support the idea that an approach to central issues in cognition is also possible studying very simple models and does not necessarily require understanding large machine learning models.
Giugno
09
2025
Timothy Logvinenko
Seminario di algebra e geometria, interdisciplinare, logica, teoria delle categorie
I will give an overview of my main research results starting with the McKay correspondence, which relates the representation theory of Lie algebras of ADE type and finite subgroups of SL_2(C) to the geometry of the minimal resolutions of Kleinian singularities. I will then explore the connections with homological invariants such as the derived category and their symmetries, and with categorification of Heisenberg algebras.
Giugno
09
2025
Martin Benning
nel ciclo di seminari: INTERNATIONAL PHD SUMMER SCHOOL "MATHEMATICS AND MACHINE LEARNING FOR IMAGE ANALYSIS "
Seminario di analisi numerica
We will introduce the basic concepts of (deterministic) regularisation theory and discuss model- and data-driven regularisations. We will discover how these concepts can be utilised to optimally sample data in magnetic resonance imaging and single-pixel camera applications, or to construct decoders for trained encoders in deep learning without additional training of the decoder.
Giugno
06
2025
Giugno
06
2025
F. Camilli
Seminario di fisica matematica
We rigorously analyse fully-trained neural networks of arbitrary depth in the Bayesian optimal setting in the so-called proportional scaling regime where the number of training samples and width of the input and all inner layers diverge proportionally. We prove an information-theoretic equivalence between the Bayesian deep neural network model trained from data generated by a teacher with matching architecture, and a simpler model of optimal inference in a generalized linear model. This equivalence enables us to compute the optimal generalization error for deep neural networks in this regime. We thus prove the "deep Gaussian equivalence principle" conjectured in Cui et al. (2023) (arXiv:2302.00375). Our result highlights that in order to escape this "trivialisation" of deep neural networks (in the sense of reduction to a linear model) happening in the strongly overparametrized proportional regime, models trained from much more data have to be considered.
Giugno
06
2025
Matteo Viale
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario interdisciplinare
TBA
Giugno
06
2025
Lucas Bouck
Seminario di analisi numerica
We study the advection diffusion equation with nonsmooth velocity field. Often in advection dominated regimes in fluids or PDE-constrained optimization problems, the velocity field is in a Sobolev space weaker than Lipschitz functions, which poses challenges for numerics and analysis. To numerically solve the problem, we study a Hybridizable Discontinuous Galerkin Method (HDG) mixed with classical upwinding. We use analytical tools of renormalized solutions for transport developed by Boyer (2005) to prove that the discrete solution converges strongly to a renormalized solution of the transport equation as the mesh size and the diffusion coefficient go to 0, even in the presence of Dirichlet boundary conditions and boundary layers. This work is joint with Noel Walkington (CMU).
Giugno
05
2025
Matteo Roffilli (Bioretics)
Seminario di analisi numerica
Vision Transformers (ViT) are very powerful deep architectures capable of recognizing and using very subtle statistical patterns, often invisible to humans. Nice but... to achieve these performances they require having large databases, well maintained and representative of the domain of interest, perhaps even i.i.d.. This usually only happens in paper-academic contexts or technological superpowers. But fortunately (for you) in this seminar we will show how it is possible to profitably use ViTs in real low-budget industrial contexts where the raw material (i.e. data) is few, dirty and often ugly.
Giugno
05
2025
Maciej Zworski
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di analisi matematica, fisica matematica
This question has been much discussed in physics and one suggestion is that the long time persistence of classical/quantum correspondence is due to interaction of a small, observed system with a larger environment. Lindblad or GKSL evolution is one of the standard models for describing such interactions. In that context the question of the length of time of classical/quantum
agreement was recently revisited in physics by Hernández-Ranard-Riedel.
In my talk I will introduce the concept of Lindblad evolution and present results showing that the evolution of a quantum observable remains close to the classical Fokker-Planck evolution in the Hilbert-Schmidt norm for times vastly exceeding the Ehrenfest time (the limit of such an agreement when there is no interaction with a larger system). The time scale is the same as in two recent papers by Hernández-Ranard-Riedel but the statement and methods are different.
The talk is based on joint work with J Galkowski and numerical results obtained jointly with Z Huang. I will also comment on recent progress on trace class estimates by Z Li and on the hypoelliptic case by H Smith.
Giugno
04
2025
Enrico Vezzali (Datalogic SpA)
Seminario di analisi numerica
Two-dimensional barcodes (such as QR and Datamatrix) are widely used in warehouse logistics and high-speed production pipelines to automate product tracking. However, to handle various size packages, it happens frequently that small and high-resolution barcodes are challenging to decode. Conventional solutions address such challenges by utilizing expensive hardware (e.g. CPU, FPGA, ASIC) or powerful lighting sources, increasing the costs of the system. This study introduces a multi-step, scalable, and adaptive super-resolution (SR) method that focuses primarily on the areas where barcodes are present and minimizes the computational burden on the uniform regions of the background. Our approach achieves superior image quality by dynamically determining the required refinement steps for each region of the image analyzed. Experiments demonstrate that our method outperforms the state-of-the-art SR models on barcode images, reaching higher PSNR and decoding rates while reducing the latency.
Giugno
04
2025
Marcelo Pereyra
nel ciclo di seminari: BAYESIAN IMAGING SCIENCES: METHODS AND ALGORITHMS
Seminario di analisi numerica
This teaching unit will introduce students to the Bayesian statistical framework for performing inference in high-dimensional inverse problems related to imaging sciences. We will start from basic concepts on probabilistic modelling, Bayesian decision theory, and Monte Carlo integration for Bayesian computation, and progress quickly to modern Bayesian imaging approaches. We will pay special attention to strategies based on stochastic diffusion processes and to Bayesian imaging models that combine elements derived from machine learning with elements derived from the physics of the considered imaging problem. The key ideas and techniques will be illustrated on imaging problems where we will conduct challenges inferences such as uncertainty quantification, hypothesis testing, model self-calibration, and model selection without ground truth.
Giugno
04
2025
Thomas Pock
nel ciclo di seminari: PRIOR LEARNING FOR SOLVING INVERSE PROBLEMS
Seminario di analisi numerica
This teaching unit introduces a computational "toolbox" for learning priors in the context of solving Bayesian inverse problems in imaging. The tools covered include methods for learning optimal discretizations of total-variation related regularization terms, explicit diffusion models based on products of 1D Gaussian mixture models, and the application of the maximum entropy principle for learning generative priors.
Giugno
03
2025
Giugno
03
2025
Marco Fava
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
The Jacobian variety of a family of singular curves is not proper in general. Several (mostly equivalent) constructions of modular compactifications have been proposed since the 1950s. These classical results, however, do not give a complete classification.
After recalling some equivalent constructions and properties of the Jacobian variety of a smooth projective curve, we show what is lost as soon as we drop the smoothness hypothesis.
We introduce the notion of a V-compactified Jacobian, together with its dependence on combinatorial V-stability condition, and show that it strictly generalises the preexisting notion of "classical" compactified Jacobian. In particular, we see that V-compactified Jacobians completely classify smoothable compactified Jacobians in the case of a nodal curve. This is joint work with Nicola Pagani and Filippo Viviani.
Maggio
30
2025
Valeriano Lanza
Seminario di algebra e geometria
For n greater or equal than 1 we show that the length 1 nested Hilbert scheme of the total space Xn of the line bundle OP1(-n), parameterizing pairs of nested 0-cycles in Xn, is a quiver variety associated with a suitable quiver with relations. This generalizes previous work about nested Hilbert schemes on C2 in one direction, and about the Hilbert schemes of points of Xn in another direction.
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Claudia Dalia Bucur
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Davide Augusto Bignamini
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Gianmarco Giovannardi
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Alessia Elisabetta Kogoj
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Gabriele Mancini
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Dario Daniele Monticelli
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Benedetta Noris
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Luigi Provenzano
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Farhan Abedin
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
dal giorno
29/05/2025
al giorno
30/05/2025
29/05/2025
al giorno
30/05/2025
Ali Maalaoui
Relazione all'interno del convegno: Variational and PDE problems in Geometric Analysis, V
Seminario di analisi matematica
Maggio
28
2025
Lorenzo Luccioli
nel ciclo di seminari: INTRODUCTION TO MATHEMATICAL FORMALIZATION WITH LEAN 4
Seminario interdisciplinare
Mathematical formalization has attracted increasing attention in recent years, with Lean 4 emerging as one of the central tools in this area. This series of four seminars will introduce mathematical formalization, discuss its significance, and showcase recent examples of successful formalization projects. Two of the seminars will provide hands-on tutorials using the interactive theorem prover Lean 4. In the final seminar, we will examine how artificial intelligence and formalization interact, highlighting recent developments in autoformalization and automatic theorem proving.
Maggio
27
2025
Lorenzo Luccioli
nel ciclo di seminari: INTRODUCTION TO MATHEMATICAL FORMALIZATION WITH LEAN 4
Seminario interdisciplinare
Mathematical formalization has attracted increasing attention in recent years, with Lean 4 emerging as one of the central tools in this area. This series of four seminars will introduce mathematical formalization, discuss its significance, and showcase recent examples of successful formalization projects. Two of the seminars will provide hands-on tutorials using the interactive theorem prover Lean 4. In the final seminar, we will examine how artificial intelligence and formalization interact, highlighting recent developments in autoformalization and automatic theorem proving.
Maggio
27
2025
Maggio
26
2025
In this talk I will study generalized automata (in the sense of Adámek-Trnková) in Joyal’s category of combinatorial species; as an important preliminary step, I will provide examples of coalgebras for the "derivative" endofunctor ∂ and for the ‘Euler homogeneity operator’ L∂ arising from the adjunction L⊣∂⊣R.
The theory is connected with, and in fact provides nontrivial examples of, differential 2-rigs—a concept I recently introduced by treating combinatorial species in the same way that a generic (differential) semiring (R,d) relates to the (differential) semiring N[[X]] of power series with natural coefficients. Joyal himself has long regarded species as categorified formal power series. This perspective aligns with a fundamental category-theoretic insight: free objects in the category of rings naturally acquire a canonical differential structure. At the heart of this phenomenon lies the representability of the prestack of derivations by an object of Kähler differentials. These ideas categorify elegantly within the 2-category of differential 2-rigs, revealing that species possess a universal property as differential 2-rigs.
The desire to study categories of ‘state machines’ valued in an ambient monoidal category (K,⊗) gives a pretext to further develop the abstract theory of differential 2-rigs, proving lifting theorems of a differential 2-rig structure from (R,∂) to the category of ∂-algebras on objects of R, and to categories of Mealy automata valued in (R,⊗), as well as various constructions inspired by differential algebra such as jet spaces and modules of differential operators.
This talk covers the content of the paper Automata and Coalgebras in Categories of Species (Proceedings of CMCS24, Luxembourg), as well as parts of an ongoing project with Todd Trimble.
Maggio
23
2025
The Hochschild cohomology of a differential graded algebra or more generally of a differential graded category admits a natural map to the graded center of its derived category: the characteristic homomorphism. We interpret this map as an edge homomorphism in a spectral sequence, which allows to study the characteristic homomorphism systematically in many interesting examples from algebra, geometry, topology and physics. To illustrate this, we will discuss several concrete examples related to coherent sheaves on algebraic curves and cochains of classifying spaces of Lie groups. If time permits, I will also indicate a new extension of this framework to $A_\infty$-categories. Some of this is joint work with M. Szymik (Sheffield) other with A. Phimister (Leicester).
Maggio
22
2025
Lorenzo Luccioli
nel ciclo di seminari: INTRODUCTION TO MATHEMATICAL FORMALIZATION WITH LEAN 4
Seminario interdisciplinare
Mathematical formalization has attracted increasing attention in recent years, with Lean 4 emerging as one of the central tools in this area. This series of four seminars will introduce mathematical formalization, discuss its significance, and showcase recent examples of successful formalization projects. Two of the seminars will provide hands-on tutorials using the interactive theorem prover Lean 4. In the final seminar, we will examine how artificial intelligence and formalization interact, highlighting recent developments in autoformalization and automatic theorem proving.
Maggio
21
2025
Matteo Marchesini
Seminario interdisciplinare
Maggio
21
2025
Marta Leocata
Seminario interdisciplinare
Maggio
21
2025
In this talk I will introduce the main topics about the new field of research called Neuroalgebraic Geometry. In particular I will focus on the definitions, results (and conjectures) contained in the papers
- J. Kileel, M. Tranger, J. Bruna, On the Expressive Power of Deep Polynomial Neural Networks, (2019).
- K. Kubjas, J. Li, M. Wiesmann, Geometry of polynomial neural networks, (2024).
- G. L. Marchetti, V. Shahverdi, S. Mereta, M. Trager, K. Kohn, An Invitation to Neuroalgebraic Geometry, (2025).
and I will talk also about my recent results on it and a list of suggested problems.
Maggio
21
2025
In this presentation I will provide a brief overview on the origin of Fractional Calculus and its current rigorous formulation. I will then discuss some physical motivations for the generalisation of this theory to the variable-order case. Then I will introduce a novel perspective on variable-order fractional calculus, its precise formulation in terms of the General Fractional Calculus framework, and I will discuss some of its implications considering the fractional relaxation equation as a case study. Lastly, I will discuss an application of the proposed formalism to the theory of viscoelasticity.
Maggio
20
2025
Quantum systems can and have been used to develop algorithms and communication protocols that outperform their classical counterparts. The advantages provided by quantum systems are studied within the framework of quantum resource theories, in which quantum states and operations are divided into free and resourceful. Many of these resource theories share an interesting property: an operation is free if and only if its image under an isomorphism known as the Choi isomorphism is a free state. We refer to resource theories exhibiting this property as Choi-defined resource theories. In this talk, I will present the mathematical framework used in quantum information and introduce quantum resource theories. Furthermore, I will define Choi-defined resource theories and demonstrate how and under what conditions one can construct them. Lastly, I will present some properties shared by all Choi-defined resource theories.
Maggio
20
2025
Ludwig Schmid
Seminario di fisica matematica, interdisciplinare
Large-scale quantum computing requires fault-tolerant algorithms to counter hardware noise that would otherwise corrupt information. While the overhead of fault-tolerant quantum computation exceeds current hardware capabilities, optimizing these protocols is crucial for practical implementation.
Clifford circuits are fundamental to these protocols, as many universal fault-tolerant quantum computing schemes, such as magic state distillation, utilize the Clifford gate set. Currently, Clifford circuits for fault-tolerant protocols are typically manually designed for specific error correction codes.
Inspired by the well-established field of digital circuit design, this work approaches Clifford circuit synthesis using satisfiability-solving techniques. We show the NP-completeness of depth-optimal Clifford synthesis and illustrate how satisfiability solving can synthesize fault-tolerant state-preparation circuits for Calderbank-Shor-Steane codes. This entails both heralded repeat-until-success and deterministic state preparation protocols.
The resulting Clifford circuit designs surpass existing constructions and enable state preparation circuits for previously under-explored quantum codes, demonstrating how classical circuit design techniques can advance fault-tolerant quantum computing.
Maggio
20
2025
Timothy Logvinenko
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Two-dimensional McKay correspondence originated in the observation by John McKay that the representation graph of a finite subgroup G of SL_2(C) coincides with the Coxeter graph of an affine Lie algebra \mathfrak{g} of ADE type. It turned out that the combinatorics of \mathfrak{g} control not only the representation theory of G but also the geometry of the minimal resolution Y of C^2/G.
In the first half of the talk I will give a gentle introduction to the subject, illustrated by examples. We will review the finite subgroups of SL_2(C), the McKay quiver Q of G, the geometry of the minimal resolution Y, and its construction as a moduli space of semistable representations of Q. The stability parameter space \Theta with the stratification by the semistable walls coincides with the Cartan algebra \mathfrak{h} of \mathfrak{g} stratified by root hyperplanes. I will show how the reflections in the classes of the exceptional curves on Y define an action of the braid group B_{\mathfrak{g}} on the cohomology, K-theory, and the derived category D(Y) of Y.
In the second half of the talk, I will report on the ongoing project to construct a certain categorical structure on an affine hyperplane arrangement on \mathfrak{h} refining that of the root hyperplanes. The braid group action above can be viewed as a categorical local system with the fibre D(Y) on the open stratum of \mathfrak{h}/W, where W is the Weyl group. We aim to extend this to a W-equivariant categorical perverse sheaf, a “perverse schober”, on the whole of the affine hyperplane arrangement. This is joint work with Arman Sarikyan (LIMS).
Maggio
19
2025
Simona Paoli
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
The simplicial category \Delta plays an important role in category theory. One of the reasons is that there is a fully faithful nerve functor from the category Cat to the category of simplicial sets (that is functors from the opposite of \Delta to Set). Its essential image consists of simplicial sets satisfying additional conditions that the Segal maps are isomorphisms. This allows to think of a small category as a type of simplicial set, and this idea has been carried on in higher dimensions in defining appropriate notions of higher categories. This talk is about a modification of \Delta, introduced by J. Kock, called the fat delta. After explaining the motivation for our interest in fat delta, both from higher category theory and from type theory, we present a study of fat delta in terms of monad with arities. This leads to a nerve theorem for relative semicategories, as well as a description of fat delta as a hypermoment categories in the sense of Berger. This is joint work with Tom de Jong, Nicolai Kraus and Stiephen Pradal, arXiv.2503.10963v1.
Maggio
19
2025
The functional organization of primary motor cortex (M1) across the cortical sheet remains obscure. Aside from the crude and static somatotopic organization of M1, there is little evidence of spatially organized dynamic patterning across the motor cortical sheet. We have previously demonstrated that spatially organized propagating patterns of excitability along a rostro-caudal axis in non-human primates signal the initiation of movement but do not specify the details of the movement (Balasubramanian, Arce-McShane, Dekleva, Collinger, & Hatsopoulos, 2023). These propagating patterns of excitability were observed in the attenuation of low frequency beta oscillation (15-35 Hz) amplitude of the local field potential (LFP). We are now investigating patterns of high frequency components of the LFP (200-400 Hz referred to as high gamma) that propagate intermittently across M1 during reaching behaviors and have found that the propagation direction carries kinematic information (Liang, Balasubramanian, Papadourakis, & Hatsopoulos, 2023; unpublished data). Given that the high gamma signal serves as an accurate proxy for multi-unit activity (Ray & Maunsell, 2011), these results suggest that a spatially organized recruitment order of multi-unit activity provides behaviorally relevant information.
Maggio
19
2025
Lorenzo Luccioli
nel ciclo di seminari: INTRODUCTION TO MATHEMATICAL FORMALIZATION WITH LEAN 4
Seminario interdisciplinare
Mathematical formalization has attracted increasing attention in recent years, with Lean 4 emerging as one of the central tools in this area. This series of four seminars will introduce mathematical formalization, discuss its significance, and showcase recent examples of successful formalization projects. Two of the seminars will provide hands-on tutorials using the interactive theorem prover Lean 4. In the final seminar, we will examine how artificial intelligence and formalization interact, highlighting recent developments in autoformalization and automatic theorem proving.
Maggio
dal giorno
19/05/2025
al giorno
20/05/2025
19/05/2025
al giorno
20/05/2025
Marithania Silvero
Relazione all'interno del convegno: Knots & Proteins
Seminario di algebra e geometria, interdisciplinare
Maggio
dal giorno
19/05/2025
al giorno
20/05/2025
19/05/2025
al giorno
20/05/2025
Patrizio Frosini
Relazione all'interno del convegno: Knots & Proteins
Seminario di algebra e geometria, interdisciplinare
Maggio
dal giorno
19/05/2025
al giorno
20/05/2025
19/05/2025
al giorno
20/05/2025
Angelo Rosa
Relazione all'interno del convegno: Knots & Proteins
Seminario di algebra e geometria, interdisciplinare
Maggio
dal giorno
19/05/2025
al giorno
20/05/2025
19/05/2025
al giorno
20/05/2025
Luka Marčič
Relazione all'interno del convegno: Knots & Proteins
Seminario di algebra e geometria, interdisciplinare
Maggio
16
2025
Patrizio Frosini
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria
Maggio
14
2025
A nonlinear matrix is a matrix whose entries are nonlinear functions of a parameter. Such problems arise from physics (Schroedinger equation) and mechanical engineering (porous materials, boundary element method, e.g.). The last 20 years, rational approximation methods and linearization were proposed to approximate such matrices by linear pencils of much higher dimensions. Applications are the nonlinear eigenvalue problem, parametric linear systems, frequency sweeping, model order reduction and the solution of time dependent problems with nonlinear frequency dependencies. We give an overview of approximation methods with focus on AAA and Krylov methods that exploit the structure of the linear pencil.
Maggio
13
2025
Roberto Svaldi
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
I will explain ideas and techniques behind recent results showing that fibered CY varieties are bounded, starting from the elliptic case and then moving to the case of higher relative dimension.
Maggio
13
2025
Luca Reggio
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Maggio
12
2025
Pietro Freni
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Maggio
09
2025
Colin Jahel
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, sistemi dinamici
My talk aim to present our joint work with Matthieu Joseph and Remi Barritault on the actions of non-Archimedean Polish groups. I will first present the notion of dissociation for probability measure-preserving actions, which allows us generalize so-called de Finetti theorems. Then, I will outline the model-theoretical conditions that we know imply dissociation and discuss how they may be improved.
Maggio
08
2025
Ben De Bondt
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di logica
Mild (consequences of) forcing axioms imply a general lifting theorem which allows to characterise precisely those homomorphisms between reduced products of countable structures which have a lift that factorises into homomorphisms between the factor structures. We will discuss recent extensions of such lifting theorems to the metric setting and ensuing rigidity phenomena for particular metric reduced product structures of interest.
This is based on joint work with Ilijas Farah and Alessandro Vignati, with Alessandro Vignati, and with Andreas Thom.
Maggio
07
2025
Michela Lapenna
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different.
The question is how do they compare in capturing the information contained in networked datasets?
We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph.
PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy.
Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased.
Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
Maggio
06
2025
µ-ellipticity describes certain degenerate forms of ellipticity typical of convex integrals at linear or nearly linear growth, such as the area integral or the iterated logarithmic model. The regularity of solutions to autonomous or totally differentiable problems is classical after Bombieri, De Giorgi and Miranda, Ladyzhenskaya and Ural’tseva and Frehse and Seregin. The anisotropic case is a later achievement of Bildhauer, Fuchs and Mingione, Beck and Schmidt and Gmeineder and Kristensen. However, all the approaches developed so far break down in presence of nondifferentiable ingredients. In particular, Schauder theory for certain significant anisotropic, nonautonomous functionals with Hölder continuous coefficients was only recently obtained by C. De Filippis and Mingione. We will see the validity of Schauder theory for anisotropic problems whose growth is arbitrarily close to linear within the maximal nonuniformity range, and discuss sharp results and insights on more general nonautonomous area type integrals. From a recent, joint work with Cristiana De Filippis (Parma) and Mirco Piccinini (Pisa)
Maggio
06
2025
Francesco Antonio Denisi
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Mori dream spaces form a class of algebraic varieties that play a significant role in birational geometry, as they exhibit ideal behaviour within the minimal model program. In this talk, we discuss the birational geometry of hypersurfaces in products of weighted projective spaces, focusing particularly on cases where they are Mori dream spaces. We generalize the results obtained by J.C. Ottem and, if time permits, we will address the Kawamata-Morrison cone conjecture for certain anticanonical Calabi-Yau hypersurfaces in products of weighted projective spaces.
Maggio
05
2025
Alexander Bufetov
Seminario di analisi matematica
Maggio
05
2025
In this completely self-contained talk, I'll discuss various versions of the Garden of Eden theorem,
the Gottschalk surjunctivity conjecture, and Kaplansky's conjecture on stable finiteness of group rings. This will
include a quick review of the notions of amenability and soficity for groups, of the theory of cellular automata, and
entropies of dynamical systems.
Aprile
30
2025
Davide Pastorello
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
After an introduction to the notion of quantum generative adversarial networks (qGANs), I will summarize a recent quantum tomography protocol for constructing a classical estimate of a quantum state by performing repeated measurements on a n-qubit system. I will then discuss the convergence of the protocol with respect to a quantum version of the first-order Wasserstein distance, inspired by the theory of optimal mass transport. In particular, I will show how this convergence result allows us to conclude that a qGAN can be equivalently trained using classical estimators of quantum states instead of quantum data. This fact is important in practice, as it enables the training of quantum models without requiring direct access to quantum memory or coherent quantum data streams.
Aprile
29
2025
Federico Tufo
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Aprile
28
2025
Claudio Agostini
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Given a realcompact space X, we denote by Exp(X) the smallest infinite cardinal
κ such that X is homeomorphic to a closed subspace of Rκ.
In this talk, we analyze the realcompactness number of countable spaces. We
will show that, for every cardinal κ, there exists a countable crowded space X such
that Exp(X) = κ if and only if p ≤ κ ≤ c. On the other hand, we show that a
scattered space of weight κ has pseudocharacter at most κ in any compactification.
This will allow us to calculate Exp(X) for an arbitrary (that is, not necessarily
crowded) countable space.
This is a joint work with Andrea Medini and Lyubomyr Zdomskyy.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Jacinta Torres
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
We will study the combinatorics (and some representation theory!) of string polytopes, mostly in type A, in terms of so-called wiring diagrams or pseudoline arrangements. We will also study the associated convex order on positive roots. Finally, we will present some new results and open problems!
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Álvaro Gutiérrez Cáceres
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
The composition of sl(2) representations is the 'plethysm' of the respective representations. Crystals are a powerful combinatorial tool for representation theory, but there is no theory on crystals for plethysms of representations. To start such a theory, it suffices to solve a combinatorial problem: decompose Young's poset of partitions into symmetric chains. We review the literature, and present a strategy to do it. Our strategy recovers recently discovered counting formulas for some plethystic coefficients, and new state-of-the-art recursive formulas for some plethysms of Schur functions.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Veronica Calvo Cortes
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
A matrix is totally positive if all of its minors are positive. This notion of positivity coincides with the type A version of Lusztig's more general total positivity in reductive real-split algebraic groups. Since skew-symmetric matrices always have nonpositive entries, they are not totally positive in the classical sense. The space of skew-symmetric matrices is an affine chart of the orthogonal Grassmannian OGr(n,2n). Thus, we define a skew-symmetric matrix to be totally positive if it lies in the totally positive orthogonal Grassmannian. We provide a positivity criterion for these matrices in terms of a fixed collection of minors, and show that their Pfaffians have a remarkable sign pattern. The totally positive orthogonal Grassmannian is a CW cell complex and is subdivided into Richardson cells. We introduce a method to determine which cell a given point belongs to in terms of its associated matroid.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Matthew Dupraz
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
In this talk I would like to talk about metric graphs and chip firing games on metric graphs. These combinatorial analogues exhibit interesting connections with algebraic curves, for example they satisfy an analogue of the Riemann-Roch theorem. Linear systems on metric graphs have a lot of structure - they are generalized polyhedral complexes and also projective tropical spaces. I would like to talk about these and explain how certain geometric quantities relate to some more algebraic ones.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Sofía Garzón Mora
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
We will discuss a generalization of Stanley's celebrated theorem that the h*-polynomial of the Ehrhart series of a rational polytope has nonnegative coefficients and is monotone under containment of polytopes. We show that these results continue to hold for weighted Ehrhart series where lattice points are counted with polynomial weights, as long as the weights are homogeneous polynomials decomposable as sums of products of linear forms that are nonnegative on the polytope. We also show nonnegativity of the h*-polynomial as a real-valued function for a larger family of weights.
This is joint work with Esme Bajo, Robert Davis, Jesús A. De Loera, Alexey Garber, Katharina Jochemko and Josephine Yu.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Ben Mills, University of York
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
Quiver presentations of Hecke categories of type D:
We discuss the algebraic structure of the Hecke category corresponding to the parabolic Coxeter system (D_n, A_{n-1}) via the combinatorics of oriented Temperley-Lieb diagrams. This will enable us to fully determine the Ext-quiver and relations presentation for these algebras.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Bárbara Muniz, Jagiellonian University Krakow
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
The decomposition of gl-representations when restricted to sp is a classic problem in representation theory, commonly referred to as symplectic branching. The multiplicities that describe this decomposition have a known combinatorial description in terms of certain Littlewood-Richardson tableaux. In this work, we construct an explicit and elementary bijection between the sp-highest weight vectors in the gl-crystals and these tableaux. Thus, we are able to present an alternative interpretation for the symplectic branching, visualizing it at the crystal level.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Eliana Tolosa Villarreal, Università degli studi di Genova
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
Every simple finite graph G has an associated Lovász-Saks-Schrijver ring R_G(d) that is related to the d-dimensional orthogonal representations of G. The study of R_G(d) lies at the intersection between algebraic geometry, commutative algebra and combinatorics. We find a link between algebraic properties, such as normality, factoriality, and strong F-regularity, of R_G(d) and combinatorial invariants of the graph G. In particular we prove that if d ≥ pmd(G)+k(G)+1 then R_G(d) is UFD. Here pmd(G) is the positive matching decomposition number of G and k(G) is its degeneracy number.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Lorenzo Vecchi, KTH - Royal Institute of Technology
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
Three decades ago, Stanley and Brenti initiated the study of the Kazhdan–Lusztig–Stanley (KLS) functions, putting on common ground several polynomials appearing in algebraic combinatorics, discrete geometry, and representation theory. In this talk we will introduce new polynomial functions called Chow functions associated to any graded bounded poset and study their applications to matroid theory, polytopes and Coxeter groups.
The Chow functions often exhibit remarkable properties (positivity, palindromicity, unimodality, gamma-positivity), and sometimes encode the graded dimensions of a cohomology or Chow ring. One of the best features of this general framework is that unimodality statements can be proven for posets without relying on versions of the Hard Lefschetz theorem.
Our framework shows that there is an unexpected relation between positivity and real-rootedness conjectures about chains on face lattices of polytopes by Brenti and Welker, Hilbert–Poincaré series of matroid Chow rings by Ferroni and Schröter, and flag enumerations on Bruhat intervals of Coxeter groups by Billera and Brenti.
This is joint work with Luis Ferroni and Jacob Matherne.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Haggai Liu, Simon Fraser University
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
The Deligne-Mumford compactification, $\overline{M_{0,n}}$, of the moduli space of $n$ distinct ordered points on $\mathbb{P}^1$, has many well understood geometric and topological properties. For example, it is a smooth projective variety over its base field. Many interesting properties are known for the manifold $\overline{M_{0,n}}(\mathbb{R})$ of real points of this variety. In particular, its fundamental group, $\pi_1(\overline{M_{0,n}}(\mathbb{R}))$, is related, via a short exact sequence, to another group known as the cactus group. Henriques and Kamnitzer gave an elegant combinatorial presentation of this cactus group.
In 2003, Hassett constructed a weighted variant of $\overline{M_{0,n}}(\mathbb{R})$: For each of the $n$ labels, we assign a weight between 0 and 1; points can coincide if the sum of their weights does not exceed one. We seek combinatorial presentations for the fundamental groups of Hassett spaces with certain restrictions on the weights.
In particular, we express the Hassett space as a blow-down of $\overline{M_{0,n}}$ and modify the cactus group to produce an analogous short exact sequence. The relations of this modified cactus group involves extensions to the braid relations in $S_n$. To establish the sufficiency of such relations, we consider a certain cell decomposition of these Hassett spaces, which are indexed by ordered planar trees.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Jon Pål Hamre, KTH
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
We introduce a set of matroid invariants called Schubert coefficients. To define and understand the Schubert coefficients we use tools from algebraic geometry such as Schubert calculus and toric geometry. The main goal is to prove the non-negativity of the Schubert coefficients of sparse paving matroids, and hopefully convince the audience that these are interesting matroid invariants.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Delio Jaramillo Velez, Chalmers University of Technology
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
In this poster, we present sufficient conditions for the second symbolic power of the edge ideal associated with a graph to be Cohen-Macaulay. These conditions involve the concept of edge-critical graphs. Furthermore, we establish that when the graph has an independence number equal to two, these conditions provide a complete characterization of the Cohen-Macaulayness of the second symbolic power.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Daniel Green Tripp, University of Bristol
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
The d-realisation number of a graph G counts, roughly speaking, the number of equivalent d-realisations of a generic d-realisation of G. It is known that this number is finite if and only if G is d-rigid. For a minimally 2-rigid graph, we give a way of computing this number as the tropical intersection number of the Bergman fan of the graphic matroid of G with its “reciprocal”. This description allows us to bound the realisation number with some matroid invariant.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Francesco Nowell, TU Berlin
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
Max-linear Bayesian Networks are a class of Directed acyclic graphical (DAG) models which are of interest to statistics and data science due to their relevance to causality and probabilistic inference, particularly of extreme events. They differ from the more extensively studied Gaussian Bayesian Networks in that the structural equations governing the model are tropical polynomials in the random variables. This difference leads to several novel challenges in the task of causal discovery, i.e. the reconstruction of the true DAG underlying a given empirical distribution. More specifically, the combinatorial criteria for separation in the graph equating to conditional independence in the distribution are such that there is no longer a well-defined notion of Markov equivalence. In this talk, we explain how the PC algorithm for causal discovery in Gaussian Bayesian Networks fails in the max-linear setting, and discuss how it may be modified such as to output a well-defined subgraph of the true DAG which encodes its most significant causal relationships. This is a joint work with Carlos Améndola and Benjamin Hollering.
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Michal Szwej, University of Bristol
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
The Pfaff-Saalschütz identity is a result from the theory of hypergeometric series which generalizes many cubic binomial identities. In this talk we present a new bijective proof of its q-analogue. The identity which follows from the main theorem gives the multiplication rule for the quantum deformation of binomial coefficients, defined by Lusztig inside Cartan subalgebra of U_q(sl_2).
Aprile
dal giorno
28/04/2025
al giorno
30/04/2025
28/04/2025
al giorno
30/04/2025
Dinushi Munasinghe, National and Kapodistrian University of Athens
Relazione all'interno del convegno: 6th Graduate Student Meeting in Applied Algebra and Combinatorics
Seminario di algebra e geometria
We write a natural type B generalization of Hecke-invariant endomorphisms over the tensor product, constructed by Lai and Luo, as an idempotent truncation of the cyclotomic q-Schur algebra of Dipper, James, and Mathas to leverage its established cellular structure in proving quasi-hereditarity results about the newer algebra.
Aprile
22
2025
Matthieu Joseph
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di logica, sistemi dinamici, algebra e geometria
For a countable homogeneous structure M, a natural question in representation theory is the classification of unitary representations of the Polish, non-archimedean group Aut(M). This question was completely answered by Tsankov for ω-categorical structures. In joint work with R. Barritault and C. Jahel, we generalize this result and go beyond ω-categoricity by addressing structures such as the integral/rational Urysohn space and the integral/rational universal diversity. We will explain how the notion of dissociation, a structural property of unitary representation for Polish non-archimedean groups, is used in our work. No background knowledge of representation theory will be assumed for this talk.
Aprile
16
2025
GIORGIA CALLEGARO
nell'ambito della serie: STOCHASTICS AND APPLICATIONS - 2025
Seminario di finanza matematica, probabilità
The aim of this work is to determine the optimal cyber-security investment strategy for an entity subject to cyber-attacks. Inspired by the Gordon-Loeb model, we assume that the success rate of cyber-attacks depends on the vulnerability of the security system under threat, which can be reduced investing in security measures. We introduce a dynamic version of the
Gordon-Loeb setting, by exploiting Hawkes stochastic processes to model the arrival of attacks. This stochastic framework is crucial to rapidly react to the random changes which characterize cyber-risk. The problem is framed as a Markovian 2-dimensional stochastic control problem with jumps and it is addressed using dynamic programming techniques. The optimal value is characterized by a partial integro-differential equation, which is solved numerically. The corresponding optimal strategy is, hence, explicitly obtained by differentiating the optimal value function.
Aprile
16
2025
Francesco Mori
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Nonequilibrium systems are ubiquitous, from swarms of living organisms to machine learning algorithms. While much of statistical physics has focused on predicting emergent behavior from microscopic rules, a growing question is the inverse problem: how can we guide a nonequilibrium system toward a desired state? This challenge becomes particularly daunting in high-dimensional or complex systems, where classical control approaches often break down. In this talk, I will integrate methods from optimal control theory with techniques from soft matter and statistical physics to tackle this problem in two broad classes of nonequilibrium systems: active matter—focusing on multimodal strategies in animal navigation and mechanical confinement of active fluids—and learning systems, where I will apply control theory to identify optimal learning principles for neural networks. Together, these approaches point toward a general framework for controlling nonequilibrium dynamics across systems and scales.
Aprile
15
2025
In this talk, we will show how representations of a (Dynkin) quiver allow to construct cluster variables for the associated Fomin-Zelevinsky cluster algebra. We will start from the basics on quiver representations, notably Gabriel's theorem establishing a bijection between positive roots and indecomposable representations. By combining this bijection with Fomin-Zelevinsky's between positive roots and non-initial cluster variables, we will obtain a map associating a non-initial cluster variable with each indecomposable representation. The starting point of additive categorification is an explicit formula for this map due to Caldero-Chapoton. It involves Euler characteristics of varieties of subrepresentations and is typical of links between cluster algebras and algebraic geometry.
Aprile
14
2025
Alessandro Contu
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, teoria delle categorie
Since their invention by Fomin-Zelevinsky in 2002, cluster algebras have shown up in an ever growing array of subjects in mathematics (and in physics). In this talk, we will approach their theory starting from elementary examples. More precisely, we will see how the remarkable integrality properties of the Coxeter-Conway friezes and the Somos sequence find a beautiful unification and generalization in Fomin-Zelevinsky's definition of cluster variables and their Laurent phenomenon theorem. Motivated by the periodicity of Coxeter-Conway friezes, we will conclude with a general periodicity theorem (Keller 2013), whose proof is based on the interaction between discrete dynamical systems and quiver representations through the combinatorial framework of cluster algebras.
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Carlo Collari
Groebner methods and applications
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Mitul Islam
Relazione all'interno del convegno: Manifolds and groups in Bologna, III
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
James Farre
Relazione all'interno del convegno: Manifolds and groups in Bologna, III
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Naomi Andrew
Two generator subgroups of free-by-cyclic groups
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Macarena Arenas
Curve surgeries and shortest geodesics
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Lorenzo Ruffoni
Relazione all'interno del convegno: Manifolds and groups in Bologna, III
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Stavroula Makri
Sections of configurations of points on orientable surfaces
Seminario di algebra e geometria
Aprile
dal giorno
14/04/2025
al giorno
16/04/2025
14/04/2025
al giorno
16/04/2025
Matthias Uschold
A dynamical criterion for vanishing homology growth
Seminario di algebra e geometria
Aprile
11
2025
Luisa Fiorot
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, interdisciplinare, teoria delle categorie
Given an abelian category A its derived category D(A) admits a natural
t-structure whose heart is A.
Moreover by the Auslander’s Formula A is equivalent to the quotient
category of coherent functors by the Serre subcategory of effaceable
functors.
Given a quasi-abelian category E its derived category D(E) admits two
canonical t-structures (left and right) whose hearts L and R are
derived equivalent and their intersection in D(E) is E, moreover E is
a tilting torsion class (rep. cotilting torsion-free class) in the
right heart R (resp. L).
We generalise the Auslander’s Formula to quasi-abelian categories and
we extend this picture to its higher version introducing
n-quasi-abelian categories.
Given X a smooth algebraic variety of dimension n the category of
locally free O_x-modules of finite rank
is n-quasi-abelian.
Aprile
11
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Aprile
10
2025
Enzo Maria Merlino
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
The regularity of minimizers for the classical one-phase Bernoulli functional has been extensively studied following the pioneering work of Alt and Caffarelli. More recently, the regularity of almost minimizers has also been investigated. This relaxed notion of minimality arises naturally in various contexts, such as variational problems with constraints, and its flexibility allows for addressing a broader range of questions. We present some results concerning the regularity of almost minimizers for a one-phase Bernoulli-type functional in Carnot groups of step two. Our approach is inspired by the methods introduced by De Silva and Savin in the Euclidean setting. We outline the main challenges and techniques employed to establish local Lipschitz regularity for almost minimizers, emphasizing the role of intrinsic gradient estimates. Additionally, we discuss certain generalizations to nonlinear counterparts. Some of the results presented stem from joint works with F. Ferrari (University of Bologna) and N. Forcillo (Michigan State University).
Aprile
10
2025
Federico Vigolo
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, sistemi dinamici
With every proper metric space are associated C*-algebras of special geometric importance (Roe algebras), originally defined for index-theoretic considerations. It is a simple observation that metric spaces that are coarsely equivalent give rise to isomorphic C*-algebras, and recently we could prove that the converse also holds. Namely, a C*-rigidity Theorem shows that spaces with isomorphic Roe algebras must be coarsely equivalent. This establishes a strong connection between the categories of coarse spaces and C*-algebras. In this introductory talk I aim to properly introduce the C*-rigidity question and illustrate the roadmap of the proof of rigidity.
Aprile
09
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Aprile
08
2025
When studying Laplace eigenfunctions on compact manifolds, their localisation or delocalisation properties at large eigenvalues are strongly related to the dynamics of the geodesic flow. In this talk, I will be interested in delocalisation phenomena, through the study of L∞ norms of eigenfunctions, on manifolds of negative curvature. After recalling the existing results and conjectures, I will show how these results can be improved by adding small random perturbations to the Laplacian. I will also present some deterministic improvements, in the case of manifolds of constant curvature.
These are joint works with Martin Vogel, and with Yann Chaubet.
Aprile
08
2025
Riccardo Rende
nell'ambito della serie: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Understanding quantum magnetism in two-dimensional systems represents a lively branch in modern condensed-matter physics. In the presence of competing super-exchange couplings, magnetic order is frustrated and can be suppressed down to zero temperature. Still, capturing the correct nature of the exact ground state is a highly complicated task, since energy gaps in the spectrum may be very small and states with different physical properties may have competing energies. Here, we introduce a variational Ansatz for two-dimensional frustrated magnets by leveraging the power of representation learning. The key idea is to use a particular deep neural network with real-valued parameters, a so-called Transformer, to map physical spin configurations into a high-dimensional feature space. Within this abstract space, the determination of the ground-state properties is simplified and requires only a shallow output layer with complex-valued parameters. We illustrate the efficacy of this variational Ansatz by studying the ground-state phase diagram of the Shastry-Sutherland model, which captures the low-temperature behavior of SrCu2(BO3)2 with its intriguing properties. With highly accurate numerical simulations, we provide strong evidence for the stabilization of a spin-liquid between the plaquette and antiferromagnetic phases. In addition, a direct calculation of the triplet excitation at the Γ point provides compelling evidence for a gapless spin liquid. Our findings underscore the potential of Neural-Network Quantum States as a valuable tool for probing uncharted phases of matter, and open up new possibilities for establishing the properties of many-body systems.
Aprile
08
2025
Laura Pertusi
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
TBA
Aprile
07
2025
Elena Pozzan
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario interdisciplinare
We present a duality between compact \( T_1 \)-spaces and a class of distributive lattices (subfit, compact, and complete), which captures key aspects of both Stone duality and \(\Omega\)-point duality in particular instances.
We then show how this duality extends to a contravariant adjunction between \( T_1 \)-spaces and bounded distributive lattices. This adjunction gives rise to a canonical compactification---the \emph{Wallman compactification}---for \( T_1 \) spaces, such that any \textit{strongly continuous} map from a \( T_1 \) space \( X \) into a compact \( T_1 \) space factors uniquely through the Wallman compactification of \( X \).
This is joint work with Matteo Viale and Mai Gehrke.
Aprile
07
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Aprile
04
2025
Daniela Paiva
Seminario di algebra e geometria
We are interested in Gizatullin’s problem which consists in the following
question: Given a smooth quartic surface S ⊂ P3, which automorphisms of S
are induced by Cremona transformations of P3?
Cremona transformations of P3 can be written as a composition of a finite
sequence of elementary maps. This is an algorithmic process called the Sarkisov
Program. In this talk, we will solve Gizatullin’s problem when S ⊂ P
3 has Picard number two by using the Sarkisov program. The results that will be
presented are in collaboration with Ana Quedo, and with Carolina Araujo and
Sokratis Zikas.
Aprile
04
2025
Daniela Paiva
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
We are interested in Gizatullin’s problem which consists of the following
question: Given a smooth quartic surface S ⊂ P3, which automorphisms of S
are induced by Cremona transformations of P3? Cremona transformations of P3 can be written as a composition of a finite sequence of elementary maps. This is an algorithmic process called the Sarkisov
Program. In this talk, we will solve Gizatullin’s problem when S ⊂ P3 has
Picard number two by using the Sarkisov program. The results that will be
presented are in collaboration with Ana Quedo, and with Carolina Araujo and
Sokratis Zikas.
Aprile
04
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Aprile
03
2025
Bruno Loureiro
nell'ambito della serie: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Feature learning - or the capacity of neural networks to adapt to the data during training - is often quoted as one of the fundamental reasons behind their unreasonable effectiveness. Yet, making mathematical sense of this seemingly clear intuition is still a largely open question. In this talk, I will discuss a simple setting where we can precisely characterise how features are learned by a two-layer neural network during the very first few steps of training, and how these features are essential for the network to efficiently generalise under limited availability of data.
Aprile
02
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Aprile
01
2025
Andrea Bianchi
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
This is joint work with Andreas Stavrou. For a compact orientable surface S of genus g with one boundary component and for an odd prime number p, we study the homology of the unordered configuration spaces C(S) := coprod_{n>=0} C_n(S) with coefficients in F_p. We describe H_*(C(S); F_p) as a bigraded module over the Pontryagin ring H_*(C(D); F_p), where D is a disc, and give a splitting as direct sum of certain well-behaved quotients of this ring. We also consider the action of the mapping class group Mod(S) on the homology, and identify the kernel of the action with the subgroup of Mod(S) generated by separating Dehn twists and p-th powers of Dehn twists. We compare with some partial results about the Mod(S)-action on ordered configuration spaces, obtained in joint work with Jeremy Miller, Jennifer Wilson, and Andreas Stavrou.
Aprile
01
2025
Marzo
31
2025
Pierfrancesco Urbani
nel ciclo di seminari: DYNAMICAL SYSTEMS IN HIGH DIMENSION: METHODS AND APPLICATIONS
Seminario di fisica matematica, probabilità
This series of lectures aims at reviewing the research activity on the study of dynamical systems in
high dimension. This subject appears in several contexts: in physics, understanding the many
body dynamics of complex systems is essential to characterize their equilibration properties and/
or lack thereof. Beyond physics, understanding the dynamics of optimization algorithms is
essential when the corresponding optimization problems are high-dimensional and non-convex.
For example this is the typical case of the training dynamics of articial neural networks. The
purpose of this course is to review what we know about dynamical systems in high dimension in
several contexts and to discuss dynamical mean eld theory which is the main toolbox to study
these problems.
Marzo
28
2025
We will provide sharp weak type estimates for the Hardy-Littlewood maximal operator in the context of Gromov hyperbolic metric measure spaces, which satisfy a locally doubling condition and the measures of balls grows exponentially for large radii. This result generalizes previous results on symmetric spaces of non compact type and rank 1, Damek-Ricci spaces, and Riemannian manifolds of pinched negative curvature. This is a joint work with S. Meda and F. Santagati.
Marzo
28
2025
Matteo Casarosa
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
We discuss a class of pro-groups whose derived limits are relevant to the additivity of strong homology. These are indexed by the set of functions {}^\kappa \omega. The case of width \omega, that is, the one where \kappa = \omega, is linked to the additivity of strong homology on the class of locally compact separable metric spaces. While an equivalence was proved for \lim^1 between certain narrow and wider system, the analogous equivalence for higher limits has long been an open question. Here we present a negative answer to that question and, time permitting, some ideas toward a consistency result on simultaneous vanishing for all cardinals and all \lim^n. This is joint work with Jeffrey Bergfalk.
Marzo
28
2025
Alessio Savini
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Given a measured groupoid G, together with Filippo Sarti, we defined a cohomology theory which generalizes the measurable bounded cohomology of a locally compact group. In the particular case of a groupoid associated to a measure preserving action, our cohomology boils down to the usual bounded cohomology of the group with twisted coefficients. We will discuss the possible applications of this result to orbit equivalence.
Marzo
28
2025
Giorgio Ferrari
nel ciclo di seminari: TOPICS IN STOCHASTIC ANALYSIS: SINGULAR CONTROL
Seminario di analisi matematica, interdisciplinare, probabilità
One-dimensional stationary mean-field games with singular controls
Marzo
27
2025
Giorgio Ferrari
nel ciclo di seminari: TOPICS IN STOCHASTIC ANALYSIS: SINGULAR CONTROL
Seminario di analisi matematica, interdisciplinare, probabilità
The optimal policy in terms of the solution to a Skorokhod reflection problem. Challenges in R^n, n>1, and the optimal solution in the one-dimensional case
Marzo
26
2025
Giorgio Ferrari
nel ciclo di seminari: TOPICS IN STOCHASTIC ANALYSIS: SINGULAR CONTROL
Seminario di analisi matematica, interdisciplinare, probabilità
Dynamic Programming Principle Equation and Verification Theorem for Markovian singular
stochastic control problems in R^n.
Marzo
25
2025
Marco Ghimenti
Seminario di analisi matematica
We consider the Dirichlet eigenvalues of the fractional
Laplacian related to a smooth bounded domain.
We will prove that there exists an arbitrarily small perturbation of
the original domain for which all Dirichlet eigenvalues of the
fractional Laplacian are simple. Also, the same result of simplicity
of eigenvalues holds for a generic perturbation of the coefficients of
the eigenvalue equation. Finally we study the set of perturbations
which preserve the multiplicity of eigenvalues
Marzo
25
2025
Giorgio Ferrari
nel ciclo di seminari: TOPICS IN STOCHASTIC ANALYSIS: SINGULAR CONTROL
Seminario di analisi matematica, interdisciplinare, probabilità
Formalization of a general class of Markovian singular stochastic control problems in R^n.
Marzo
25
2025
Clemens Bannwart
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
We give an introduction to Topological Data Analysis (TDA), focusing on Persistent Homology. This is a technique to extract information about the shape of data and summarize it as a collection of intervals, also called a barcode. If the data is given in the form of a nice enough function on a smooth manifold, there are connections to Morse theory, where the topology of the underlying manifold is related to the critical points of the function. We then move the focus to Morse-Smale vector fields, which are a class of vector fields with good structural properties, and present new approaches to extend the aforementioned methods to these objects. We do so by applying different algebraic methods such as parametrized chain complexes and spectral sequences.
Marzo
24
2025
Giorgio Ferrari
nel ciclo di seminari: TOPICS IN STOCHASTIC ANALYSIS: SINGULAR CONTROL
Seminario di analisi matematica, interdisciplinare, probabilità
Motivation of singular stochastic controls via an example.
Marzo
21
2025
Abstract: The Hochschild cohomology of a differential graded algebra or more generally of a differential graded category admits a natural map to the graded center of its derived category: the characteristic homomorphism. We interpret this map as an edge homomorphism in a spectral sequence, which allows to study the characteristic homomorphism systematically in many interesting examples from algebra, geometry, topology and physics. To illustrate this, we will discuss several concrete examples related to coherent sheaves on algebraic curves and cochains of classifying spaces of Lie groups. If time permits, I will also indicate a new extension of this framework to $A_\infty$-categories. Some of this is joint work with M. Szymik (Sheffield) other with A. Phimister (Leicester).
Marzo
20
2025
The aim of Electrical Impedance Tomography (EIT) is to determine the electrical conductivity distribution inside a domain by applying currents and measuring voltages on its boundary. Mathematically, the EIT reconstruction task can be formulated as a non-linear inverse problem. The Bayesian inverse problems framework has been applied expensively to solutions of the EIT inverse problem, in particular in the cases when the unknown conductivity is believed to be blocky. In this talk, we demonstrate that by exploiting linear algebraic considerations it is possible to organize the calculation for the Bayesian solution of the nonlinear EIT inverse problem via finite element methods with sparsity promoting priors in a computationally efficient manner. The proposed approach uses the Iterative Alternating Sequential (IAS) algorithm for the solution of the linearized problems. Within the IAS algorithm, a substantial reduction in computational complexity is attained by exploiting the low dimensionality of the data. Numerical tests on synthetic and real data illustrate the computational efficiency of the proposed algorithm.
Marzo
19
2025
Luciano Campi
nell'ambito della serie: STOCHASTICS AND APPLICATIONS - 2025
Seminario di finanza matematica, probabilità
We frame dynamic persuasion in a partial observation stochastic control game with an ergodic criterion. The Receiver controls the dynamics of a multidimensional unobserved state process. Information is provided to the Receiver through a device designed by the Sender that generates the observation process. The commitment of the Sender is enforced. We develop this approach in the case where all dynamics are linear and the preferences of the Receiver are linear-quadratic. We prove a verification theorem for the existence and uniqueness of the solution of the HJB equation satisfied by the Receiver’s value function. An extension to the case of persuasion of a mean field of interacting Receivers is also provided. We illustrate this approach in two applications: the provision of information to electricity consumers with a smart meter designed by an electricity producer; the information provided by carbon footprint accounting rules to companies engaged in a best-in-class emissions reduction effort. In the first application, we link the benefits of information provision to the mispricing of electricity production. In the latter, we show that when firms declare a high level of best-in-class target, the information provided by stringent accounting rules offsets the Nash equilibrium effect that leads firms to increase pollution to make their target easier to achieve. This is a joint work with: R. Aïd (Paris Dauphine), O. Bonesini (LSE) and G. Callegaro (Padova).
Marzo
18
2025
Bruno Dewer
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
An elementary Mori contraction from a smooth variety X is a
morphism with connected fibres onto a normal variety which contracts a
single extremal ray of K_X-negative curves. Thanks to a result by P.
Ionescu and J. Wisniewsi, we know that the length of such a contraction
(i.e. the minimal degree -K_X can have on contracted rational curves) is
bounded from above. In a paper which dates back to 2013, A. Höring and
C. Novelli studied elementary Mori contractions of maximal length, that
is, elementary Mori contractions for which the upper bound is met. Their
main result exhibits the structure of a projective bundle for the locus
of positive-dimensional fibres up to a birational modification. In my
talk, I will move to the submaximal case, in other words the case where
the length equals its upper bound minus one, and focus on the divisorial
case.
Marzo
13
2025
Given a telecommunication network represented by a directed graph, our problem is to route one single stream of packets on the IP network along a min-cost path with a constraint on the maximum delay that any packet may incur. From a mathematical point of view, this problem, known as Delay Constrained Routing (DCR), can be formulated as a Mixed-Integer Second-Order Cone Program (MISOCP), where one needs to simultaneously (and "optimally") compute paths and reserve resources along the paths of the network. The DCR problem presents an interesting mixture of combinatorial and continuous structures and naturally lends itself to decomposition methods. We will discuss formulations, algorithms and computational results on real/realistic network instances.
Marzo
13
2025
Alberto Casali
Seminario di algebra e geometria
Marzo
11
2025
Davide Giovagnoli
Seminario di analisi matematica
The Stefan problem describes the phenomenon of freezing and melting of a material with a solid-liquid interphase, such as ice and water. It can be formulated as a parabolic free boundary problem where the interface between the solid and the liquid regions evolves over time and is an unknown of the problem. After introducing the problem and some related literature, the seminar will focus on presenting some recent techniques to obtain regularity results starting from an initial suitable flatness assumption for the one-phase Stefan problem with the presence of a right-hand side.
This talk will be based on a recent collaboration with F.Ferrari, N.Forcillo and D.Jesus.
Marzo
11
2025
David Jesus, Università di Bologna
Seminario di analisi matematica
Transmission problems describe physical phenomena where the behavior of a system changes across a fixed interface, resulting in different PDEs on each side. These PDEs are coupled through a transmission condition, typically of the Neumann type.
In this talk, we will discuss some recent results concerning transmission problems governed by fully nonlinear operators which degenerate near the transmission interface. We obtain Holder differentiability of solutions up to the interface, with optimal exponent, which depends pointwise on the rate of degeneracy.
Marzo
11
2025
Daniela De Silva, Columbia University, New York
Seminario di analisi matematica
Marzo
11
2025
Ugo Gianazza, Università di Pavia
Seminario di analisi matematica
The gradient of weak solutions to porous medium-type equations or systems possesses a higher integrability than the one assumed in the pure notion of a solution. This holds true both in the degenerate range $m>1$ and in the singular range $0<m<1$. The critical and sub-critical singular case, i.e. when $0<m\le \frac{(N-2)_+}{N+2}$, presents further difficulties, which have been recently settled. I will discuss the problem in its generality, focusing in particular on the latest results.
The critical and subcritical case is a joint work with V. B\"ogelein, F. Duzaar and. N. Liao (University of Salzburg, Austria), but
previous contributions are also due to S. Schwarzacher, R. Korte, C. Scheven.
Marzo
11
2025
Claudia Beatriz Lederman, IMAS - CONICET and Departamento de Matematica, Universidad de Buenos Aires, Argentina
Seminario di analisi matematica
We consider viscosity solutions to a two-phase free boundary problem for a nonlinear elliptic PDE with non-zero right hand side. We obtain regularity results for solutions and their free boundaries.
The operator under consideration is a model case in the class of partial differential equations with non-standard growth. This type of operators have been used in the modelling of non-Newtonian fluids, such as electrorheological or thermorheological fluids, also in non-linear elasticity and image reconstruction.
The fact that we are dealing with nonlinear degenerate/singular equations with non-zero right hand side leads to challenging difficulties that will be addressed in this talk.
This is joint work with Fausto Ferrari (University of Bologna, Italy)
Marzo
11
2025
Isabeau Birindelli, Sapienza Università di Roma
Seminario di analisi matematica
I will present a result obtain in collaboration with Hitoshi Ishii and Ariela Briani,
that studies the asymptotic behaviors of solutions of fully nonlinear equations in thin domains with oblique boundary conditions with a test function approach à la Evans.
The limit equation contains new terms in the second, first and zeroth order terms.
Marzo
10
2025
Gianmaria Verzini, Politecnico di Milano
Seminario di analisi matematica
When analyzing the survival threshold for a species in population dynamics, one is led to consider the principal eigenvalue of some indefinite weighted problems in a bounded domain. The minimization of such eigenvalue, associated with either Dirichlet or Neumann boundary conditions, translates into a shape optimization problem.
We perform the analysis of the singular limit of this problem, in case of arbitrarily small favorable region. We show that, in this regime, the favorable region is connected and it concentrates at points depending on the boundary conditions. Moreover, we investigate the interplay between the location of the favorable region and its shape. Joint works with Lorenzo Ferreri, Dario Mazzoleni and Benedetta Pellacci.
Marzo
10
2025
Ovidiu Savin, Columbia University, New York
Seminario di analisi matematica
We discuss the construction of some new family of homogenous solutions for the thin obstacle problem in R^3, with frequencies different from the standard ones coming from R^2. This is a joint work with Federico Franceschini.
Marzo
10
2025
Enzo Maria Merlino, Università di Bologna
Seminario di analisi matematica
The regularity of minimizers for the classical one-phase Bernoulli functional has been extensively studied following the pioneering work of Alt and Caffarelli. More recently, the regularity of almost minimizers has also been investigated. We present some results concerning the regularity of almost minimizers for a one-phase Bernoulli-type functional within Carnot groups of step two. Our approach is inspired by the methods introduced by De Silva and Savin in the Euclidean setting. We outline the main challenges and techniques employed to establish local Lipschitz regularity for almost minimizers, emphasizing the role of intrinsic gradient estimates. Additionally, we discuss certain generalizations to the nonlinear framework. Some of the results presented stem from joint work with F. Ferrari (University of Bologna) and N. Forcillo (Michigan State University).
Marzo
10
2025
Nicolò Forcillo, Michigan State University
Seminario di analisi matematica
Marzo
10
2025
Diego Moreira, Universida do Ceara, Brazil
Seminario di analisi matematica
In this talk, we revisit some classical Liouville-type results in half spaces for uniformly elliptic equations. We extend these results to the nonuniformly elliptic equations known as false mean curvature equations. The regularity theory of locally Lipschitz viscosity solutions will also be addressed.
Marzo
10
2025
Susanna Terracini, Università di Torino
Seminario di analisi matematica
We investigate the asymptotic behavior, as $\beta \to +\infty$, of solutions to competition-diffusion system of type
\[
\begin{cases}
\Delta u_{i,\beta} = \beta u_{i,\beta} \prod_{j \neq i} u_{j,\beta}^2 & \text{in }\Omega,\\
u_{i,\beta} = \varphi_i \ge 0& \text{on }\partial \Omega,
\end{cases} \quad i=1,2,3,
\]
where $\varphi_i \in W^{1,\infty}(\Omega)$ satisfy the \emph{partial segregation condition}
\[
\varphi_1\,\varphi_2\,\varphi_3 \equiv 0 \quad \text{in $\overline{\Omega}$}.
\]
For $\beta>1$ fixed, a solutions can be obtained as a minimizer of the functional
\[
J_\beta({\bf u},\Omega):= \int_{\Omega} \big( \sum_{i=1}^3 |\nabla u_i|^2 + \beta \prod_{j=1}^3 u_j^2\big)\,dx
\]
on the set of functions in $H^1(\Omega,\R^3)$ with fixed traces on $\partial \Omega$. We prove \emph{a priori} and \emph{uniform in $\beta$} H\"older bounds. In the limit, we are lead to minimize the energy
\[
J{\bf u},\Omega):= \int_{\Omega} \sum_{i=1}^3 |\nabla u_i|^2 \,dx
\]
over all partially segregated states:
\[
u_1\,u_2\,u_3 \equiv 0 \quad \text{in $\overline{\Omega}$}
\]
satisfying the given, partially segregated, boundary conditions above. We prove regularity of the free boundary up to a low-dimensional singular set.
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Susanna Terracini, Università di Torino
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Ugo Gianazza, Università di Pavia
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Claudia Lederman, Univesidad de Buenos Aires and CONICET, Argentina
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
We consider viscosity solutions to a two-phase free boundary problem for a nonlinear elliptic PDE with non-zero right hand side. We obtain regularity results for solutions and their free boundaries.
The operator under consideration is a model case in the class of partial differential equations with non-standard growth. This type of operators have been used in the modelling of non-Newtonian fluids, such as electrorheological or thermorheological fluids, also in non-linear elasticity and image reconstruction.
The fact that we are dealing with nonlinear degenerate/singular equations with non-zero right hand side leads to challenging difficulties that will be addressed in this talk.
This is joint work with Fausto Ferrari (University of Bologna, Italy)
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Diego Moreira, Universidad do Cearà, Brazil
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Gianmaria Verzini, Politecnico di Milano
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Isabeau Birindelli, Sapienza Università di Roma
Relazione all'interno del convegno: Free boundaries in action
Seminario di analisi matematica
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Daniela De Silva, Columbia University, New York
Relazione all'interno del convegno: Free boundaries in action
Marzo
dal giorno
10/03/2025
al giorno
11/03/2025
10/03/2025
al giorno
11/03/2025
Ovidiu Savin, Columbia University, New York
Relazione all'interno del convegno: Free boundaries in action
Marzo
04
2025
Roberto Pignatelli
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
In the first part of the seminar, I will discuss the concept of Birational Geometry, introduce some birational iInvariants and the moduli spaces of varieties of general type, along with a few examples that I consider significant.
In the second part, I will present some recent results, obtained in collaboration with S. Coughlan, Y. Hu, and T. Zhang, on certain moduli spaces of three-dimensional varieties of general type.
Febbraio
26
2025
Peridynamics is a nonlocal version of continuum mechanics theory able to incorporate singularities since it does not take into account spatial partial derivatives. As a consequence, it assumes long-range interactions among material particles and is able to describe the formation and the evolution of fractures. The discretization of such nonlocal model requires the use of raffinate numerical tools for approximating the solutions to the model. Due to the presence of a convolution product in the definition of the nonlocal operator, we propose a spectral collocation method based on the implementation of Fourier and Chebyshev polynomials to discretize the model. The choice can benefit of the FFT algorithm and allow us to deal efficiently with the imposition of non-periodic boundary conditions by a volume penalization technique. We prove the convergence of such methods in the framework of fractional Sobolev space and discuss numerically the stability of the scheme. We also investigate the qualitative aspects of the convolution kernel and of the nonlocality parameters by solving an inverse peridynamic problem by using a Physics-Informed Neural Network activated by suitable Radial Basis functions. Additionally, we propose a virtual element approach to obtain the solution of a nonlocal diffusion problem. The main feature of the proposed technique is that we are able to construct a nonlocal counterpart for the divergence operator in order to obtain a weak formulation of the peridynamic model and exploit the analogies with the known results in the context of Galerkin approximation. We prove the convergence of the proposed method and provide several simulations to validate our results.
References:
[1] Lopez, L., Pellegrino, S. F. (2021). A spectral method with volume penalization for a nonlinear peridynamic model International Journal for Numerical Methods in Engineering 122(3): 707–725. https://doi.org/10.1002/nme.6555
[2] Lopez, L., Pellegrino, S. F. (2022). A space-time discretization of a nonlinear peridynamic model on a 2D lamina Computers and Mathematics with Applications 116: 161–175. https://doi.org/10.1016/j.camwa.2021.07.0041
[3] Lopez, L., Pellegrino, S. F. (2022). A non-periodic Chebyshev spectral method avoiding penalization techniques for a class of nonlinear peridynamic models International Journal for Numerical Methods in Engineering 123(20): 4859–4876. https://doi.org/10.1002/nme.7058
[4] Difonzo, F. V., Lopez, L., Pellegrino, S. F. (2024). Physics informed neural networks for an inverse problem in peridynamic models Engineering with Computers. https://doi.org/10.1007/s00366-024-01957-5
[5] Difonzo, F. V., Lopez, L., Pellegrino, S. F. (2024). Physics informed neural networks for learning the horizon size in bond-based peridynamic models Computer Methods in Applied Mechanics and Engineering. https://doi.org/10.1016/j.cma.2024.117727
Febbraio
24
2025
Febbraio
21
2025
Josh Wrigley
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
Febbraio
20
2025
Paolo Albano
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
We discuss the strong unique continuation property for linear differential operators of the form sum of squares of vector fields satisfying the Hörmander condition.
We provide some negative and some positive results.
Febbraio
20
2025
Sunra Mosconi
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
I will discuss the existence of a solution to the logarithmic Schrödinger equation in a bounded convex domain, with the property that log u is concave. Since the reaction is sign-changing and non-monotone, the classical techniques to attack the problem fail. We instead rely on a continuity argument for the approximating Lane-Emden problems based on the heuristic argument. We will discuss the optimality of the result, exhibiting for any α > 0 a solution such that u^a is not concave.
This is a joint work with M. Squassina and M. Gallo.
Febbraio
19
2025
Philippe Ellia
nel ciclo di seminari: MATEMATICI NELLA STORIA
Seminario di algebra e geometria, analisi numerica, storia della matematica
Febbraio
19
2025
Claudia Ceci
nell'ambito della serie: STOCHASTICS AND APPLICATIONS - 2025
Seminario di finanza matematica, probabilità
We investigate the optimal self-protection problem, from the point of view of an insurance buyer, when the loss process is described by a Cox-shot-noise process and a Hawkes process with an exponential memory kernel. The insurance buyer chooses both the percentage of insured losses and the prevention effort. The latter term refers to actions aimed at reducing the frequency of the claim arrivals. The problem consists in maximizing the expected exponential utility of terminal wealth, in presence of a terminal reimbursement. We show that this problem can be formulated in terms of a suitable backward stochastic differential equation (BSDE), for which we prove existence and uniqueness of the solution. We extend in several directions the results obtained by Bensalem, Santibanez and Kazi-Tani [Finance Stoch. 2023] and compare our results with those presented therein.
The talk is based on a joint paper with M. Brachetta, G. Callegaro and C. Sgarra.
Febbraio
18
2025
Alessio D'Alì
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Febbraio
11
2025
Febbraio
10
2025
Federico Bambozzi
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
Febbraio
07
2025
Alessandro Ingrosso
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica
Transfer learning (TL) is a well-established machine learning technique to boost the generalization performance on a specific (target) task using information gained from a related (source) task, and it crucially depends on the ability of a network to learn useful features. I will present a recent work that leverages analytical progress in the proportional regime of deep learning theory (i.e. the limit where the size of the training set P and the size of the hidden layers N are taken to infinity keeping their ratio P/N finite) to develop a novel statistical mechanics formalism for TL in Bayesian neural networks. I'll show how such single-instance Franz-Parisi formalism can yield an effective theory for TL in one-hidden-layer fully-connected neural networks. Unlike the (lazy-training) infinite-width limit, where TL is ineffective, in the proportional limit TL occurs due to a renormalized source-target kernel that quantifies their relatedness and determines whether TL is beneficial for generalization.
Febbraio
06
2025
Alessandro Verra
nel ciclo di seminari: MATEMATICI NELLA STORIA
Seminario di algebra e geometria, storia della matematica
La conferenza intende approfondire la figura, storica e scientica, del grande geometra Jakob Steiner alla luce del suo viaggio in Italia, svoltosi nel 1843-44. Uno degli episodi salienti del viaggio è la scoperta della superficie che prese poi il nome di superficie romana di Steiner. Esso si inserisce in un più ampio episodio, con tutte le caratteristiche di un Grand Tour, che
vedrrà, in Italia con Steiner, altri matematici di primissimo piano, residenti a Berlino o comunque collegati all'odierna Humboldt Universitaet di tale città.
Sarà proprio Alexander von Humboldt a spendersi per rendere possibile tale impresa a Steiner ed ai suoi compagni di viaggio: Carl Borchardt, Johann P. G. Lejeune Dirichlet, Carl Gustav Jacobi e Ludwig Schlaefli. Su di essa diversi spunti di informazione e descrizione verranno presentati, al fine di metterne a fuoco i diversi aspetti storici, geometrici e culturali, negli anni che precedevano la nascita, con Luigi Cremona e diversi altri, della Scuola geometrica italiana.
Febbraio
06
2025
David Jesus, Università di Bologna
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
Transmission problems describe physical phenomena where the behavior of a system changes across a fixed interface, resulting in different PDEs on each side. These PDEs are coupled through a transmission condition, typically of the Neumann type.
In this talk, we will discuss some recent results concerning transmission problems governed by fully nonlinear operators which degenerate near the transmission interface. We obtain Holder differentiability of solutions up to the interface, with optimal exponent, which depends pointwise on the rate of degeneracy.
Research activity supported by PRIN 2022 7HX33Z - CUP J53D23003610006, Pattern formation in nonlinear phenomena
Febbraio
05
2025
Gautam Pai
nell'ambito della serie: NEUROMATEMATICA
Seminario di analisi matematica, sistemi dinamici
The roto-translation group SE(2) has been of active interest in image analysis due to methods that lift the image data to multi-orientation representations defined in this Lie group. This has led to impactful applications of crossing-preserving flows for image de-noising, geodesic tracking, and roto-translation equivariant deep learning. In this talk, I will enumerate a computational framework for optimal transportation over Lie groups, with a special focus on SE(2). I will describe several theoretical aspects such as the non-optimality of group actions as transport maps, invariance and equivariance of optimal transport, and the
quality of the entropic-regularized optimal transport plan using geodesic distance approximations. Finally, I will illustrate a Sinkhorn-like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions. We report advancements with the experiments on 1) 2D shape/ image barycenters, 2) interpolation of planar orientation fields, and 3) Wasserstein gradient flows on SE(2). We observe that our framework of lifting images to SE(2) and optimal transport with left-invariant anisotropic metrics leads to equivariant transport along dominant contours and salient line structures in the image and leads to meaningful interpolations compared to their counterparts on R^2.
*Joint work with Daan Bon, Gijs Bellaard, Olga Mula, and Remco Duits from CASA – TU/e.
Preprint: https://arxiv.org/abs/2402.15322 (to appear in SIAM Journal in Imaging Sciences 2025)
Febbraio
del 05/02/2025
Dino Zardi
Relazione all'interno del convegno: Matematica e Clima
Seminario interdisciplinare
Febbraio
del 05/02/2025
Franco Flandoli
Relazione all'interno del convegno: Matematica e Clima
Seminario interdisciplinare
Febbraio
04
2025
Allard’s theorem roughly states that a minimal surface, that is close enough to a plane, coincides with the graph of a smooth function which enjoys suitable a priori estimates. In this talk we will show how one can prove this result by exploiting viscosity technique and a weighted monotonicity formula. -Seminario per il ciclo ASK -
Febbraio
04
2025
Elena Collacciani
Seminario di algebra e geometria
In this talk, I will provide an elementary introduction to the Local Langlands Correspondence, focusing on the key concepts and definitions of the objects involved. We will build intuition by examining some simpler instances of the correspondence, including local class field theory, the case of GLn , and the split case, before presenting the general statement.
In the second part, we will explore a conjecture proposed by Vogan, which suggests a reduction of the Local Langlands Correspondence from p-adic fields to finite fields. Particular emphasis will be placed on the GLn case, where the conjecture has an easier formulation and has been established through the work of Macdonald, Silberger, and Zink. Finally, I will briefly discuss the conjecture for SLn, talking about my research contributions to this area.
Febbraio
04
2025
Three decades ago, Stanley and Brenti initiated the study of the Kazhdan–Lusztig–Stanley (KLS) functions, putting on common ground several polynomials appearing in algebraic combinatorics, discrete geometry, and representation theory. In this talk we present a theory that parallels the KLS theory. To each kernel in a given poset, we associate a function in the incidence algebra that we call the Chow function.
The Chow function often exhibits remarkable properties, and sometimes encodes the graded dimensions of a cohomology or Chow ring. The framework of Chow functions
provides natural polynomial analogs of graded module decompositions that appear in algebraic geometry, but that work for arbitrary posets, even when no graded module
decomposition is known to exist. In this general framework, we prove a number of unimodality and positivity results without relying on versions of the Hard Lefschetz
theorem. Our framework shows that there is an unexpected relation between positivity and real-rootedness conjectures about chains on face lattices of polytopes by Brenti and Welker, Hilbert–Poincaré series of matroid Chow rings by Huh, and enumerations on Bruhat intervals of Coxeter groups by Billera and Brenti. This is joint work with Luis Ferroni and Jacob Matherne https://arxiv.org/abs/2411.04070.
Febbraio
03
2025
Valter Moretti
Seminario di fisica matematica
I will review some longstanding open problems concerning the notion of spatial localization of quantum particles in relativistic regime and I will present some recent achievements on the subject, also in relation with the so-called causal logic of the Minkowski space-time.
Gennaio
31
2025
A series of recent papers by Bergfalk, Lupini and Panagiotopoulus developed the foundations of a field known as 'definable algebraic topology,' in which classical cohomological invariants are enriched by viewing them as groups with a Polish cover. This allows one to apply techniques from descriptive set theory to the study of cohomology theories. In this talk, we will establish a 'definable ' version of a classical theorem from obstruction theory, and use this to study the potential complexity of the homotopy relation on the space of continuous maps $C(X, |K|)$, where $X$ is a locally compact Polish space, and K is a locally finite countable simplicial complex. We will also characterize the Solecki Groups of the Cech cohomology of X, which are canonical approximations of a Polishable subgroup of a Polish group.
Gennaio
31
2025
Nicholas Meadows
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
Gennaio
31
2025
Sarah Hopkins
Seminario di didattica della matematica
Sarah Hopkins is an Associate Professor in Mathematics Education at Monash University (Melbourne, Australia). In this presentation, Sarah will provide a brief overview of a paper she co-authored that was recently published; she will then describe the journey involved in getting it published. Reviewers' comments and replies will be examined and strategies for navigating the publication process will be discussed.
Gennaio
30
2025
Marco Caroccia
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
The classical Plateau problem asks which surface in three-dimensional space spans the least area among all the surfaces with boundary given by an assigned curve S. This problem has many variants and generalizations, along with (partial) answers, and has inspired numerous new ideas and techniques. In this talk, we will briefly introduce the problem in both its classical and modern contexts, and then we will focus on a specific vectorial (planar) type of the Plateau problem.
-
Given a curve S in the plane, we can ask which diffeomorphism T of the disk D maps the boundary of D to S and spans the least area, computed as the integral of the Jacobian of T, among competitors with the same boundary condition. For simply connected curves, the answer is provided by the Riemann map, and the minimal area achieved is the Lebesgue measure of the region enclosed by S. For more complex curves, possibly self-intersecting, new analysis is required. I will present a recent result in this sense, obtained in collaboration with Prof. Riccardo Scala from the University of Siena, where the value of the minimum area is computed with an explicit formula that depends on the topology of S.
Gennaio
28
2025
A series of recent papers by Bergfalk, Lupini and Panagiotopoulus developed the foundations of a field known as 'definable algebraic topology,' in which classical cohomological invariants are enriched by viewing them as groups with a Polish cover. This allows one to apply techniques from descriptive set theory to the study of cohomology theories. In this talk, we will establish a 'definable ' version of a classical theorem from obstruction theory, and use this to study the potential complexity of the homotopy relation on the space of continuous maps $C(X, |K|)$, where $X$ is a locally compact Polish space, and K is a locally finite countable simplicial complex. We will also characterize the Solecki Groups of the Cech cohomology of X, which are canonical approximations of a Polishable subgroup of a Polish group.
Gennaio
28
2025
Elia Fioravanti
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Given a (nice) group G, we are interested in how fast the length of a group element can grow when we apply powers of a given outer automorphism of G. If the group G is free or the fundamental group of a closed surface, classical train-track techniques give a complete and precise picture. This can be extended to automorphisms of all negatively curved (a.k.a. Gromov hyperbolic) groups G, using Rips-Sela theory and the canonical JSJ decomposition. Very little seems to be known beyond this setting. We study this problem for a broad class of non-positively curved groups: "special" groups in the Haglund-Wise sense. In this setting, we prove that:
(1) the top exponential growth rate of any automorphism is an algebraic integer;
(2) if the automorphism is untwisted, then it admits only finitely many growth rates, and each of these is polynomial-times-exponential.
Gennaio
27
2025
Accurately estimating landslides’ failure surface depth is essential for hazard prediction. However, most of the classical methods rely on overly simplistic assumptions [1]. In this work, we will present the landslide thickness estimation problem as an inverse problem Aw = b, obtained from discretization of the thickness equation [2]:
∂(hf vx)/∂x + ∂(hf vy)/∂y = − ∂ζ/∂t , (1)
where the forward operator A contains information on the surface velocity (v_x, v_y), the right-hand side b corresponds to the surface elevation change ∂ζ/∂t, and w is the thickness hf . By employing a regularization approach, the inverse problem is reformulated as an optimization problem. In real-world scenarios, often no information on neither the noise type nor the noise level affecting data is available. In this context, the correct choice of the regularization parameter becomes a pressing issue. We propose a method to determine this parameter in a fully automatic way for the thickness inversion problem. Results obtained on both synthetic data generated by landslide simulation software and data measured from real-world landslides will be shown.
[1] Jaboyedoff M., Carrea D., Derron M.H., Oppikofer T., Penna I.M., Rudaz B. (2020): A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology, 267, 105478
[2] Booth A. M. ; Lamb M. P. ; Avouac J.P. ; Delacourt C. (2013): Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France. Geophysical Research Letters, Vol. 40, 4299 - 4304.
Gennaio
24
2025
Francesco Milizia
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, analisi matematica, interdisciplinare
The simplicial volume is a homotopy invariant of manifolds; this talk is about the simplicial volume of a Davis' manifolds, obtained from the so-called reflection group trick, which is a powerful method for constructing aspherical manifolds. I will describe an approach based on the study of triangulations of spheres and simplicial maps between them. This approach also presents connections with the theory of graph minors.
No knowledge about simplicial volume or Davis' reflection group trick is expected from the audience.
Gennaio
23
2025
Francesca Corni, assegnista di ricerca dell'Università di Bologna
nell'ambito della serie: SEMINARI DI ANALISI MATEMATICA BRUNO PINI
Seminario di analisi matematica
In this talk we present an explicit area formula to compute the spherical Hausdorff measure of an intrinsic regular graph in an arbitrary homogeneous group. We assume the intrinsic graph to be intrinsically differentiable at any point with continuous intrinsic differential. The key aspect of the result lies in the introduction of a suitable notion of intrinsic Jacobian and in the computation of an explicit expression for this object. Eventually, we present recent results about the symmetries of some homogeneous distances for which the area formula takes a simplified expression. This is a joint work with V. Magnani (Unipi).
Attività di ricerca supportata dal progetto INDAM-GNAMPA-2024: "Free boundary problems in noncommutative structures and degenerate operators" CUP E53C23001670001
Gennaio
21
2025
Pierpaola Santarsiero
nell'ambito della serie: SEMINARIO DI ALGEBRA E GEOMETRIA
Seminario di algebra e geometria
Gennaio
20
2025
Lorenzo Luperi Baglini
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di logica
We introduce the concept of Ramsey pairs, and show how they can be prove several infinitary results in combinatorics.
Gennaio
20
2025
Gennaio
17
2025
Pietro Freni
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Gennaio
16
2025
Luigi Ambrosio
nel ciclo di seminari: MATEMATICI NELLA STORIA
Seminario di analisi matematica, storia della matematica
Dopo alcuni cenni biografici sulla vita di Ennio De Giorgi e alcuni ricordi personali, nel seminario verrà illustrato l'impatto che egli ha avuto e continua ad avere nella ricerca matematica, nel ricordo di tante generazioni di studenti che, anche se non hanno avuto la fortuna di conoscerlo, ne riconoscono l'eredita'.
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Kieran O'Grady
General polarized varieties of type K3^[n] as moduli spaces of vector bundles.
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Valeria Bertini
Terminalizations of quotients of compact hyperkähler manifolds by induced symplectic automorphisms
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Chiara Camere
Logarithmic Enriques Varieties
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Salvatore Floccari
The hyper-Kummer construction and applications
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Lucas Li Bassi
Schemi di Hilbert su superfici simplettiche irriducibili
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Francesco Meazzini
Deformations of monomial ideals
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Antonio Rapagnetta
Locally trivial monodromy of moduli spaces of sheaves on K3 surfaces
Seminario di algebra e geometria
Gennaio
dal giorno
15/01/2025
al giorno
17/01/2025
15/01/2025
al giorno
17/01/2025
Gianluca Pacienza
Regenerations and applications
Seminario di algebra e geometria
Gennaio
10
2025
Tamas Katay
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica
Group operations on a fixed countably infinite universe form a Polish space G. Thus we can view group properties as isomorphism-invariant subsets of G, and it makes sense to ask: what properties are generic (in the sense of Baire category)?
In my talk, I will address this question and if time permits, I may also say a few words about generic properties of compact groups.
Gennaio
09
2025
Ivan Di Liberti
nell'ambito della serie: LOGIC, CATEGORIES, AND APPLICATIONS SEMINAR
Seminario di algebra e geometria, logica, teoria delle categorie
Inspired by a recent characterisation of coherent topoi as a class of Kan injectives, we provide a tentative definition of fragment of geometric logic. We treat them as mathematical objects, and study them from the point of view of Lindstrom-type theorems.
Gennaio
09
2025
Gennaio
09
2025
In this seminar, I will talk about Objective Function Free Optimization (OFFO) in the context of pruning the parameter of a given model. OFFO algorithms are methods where the objective function is never computed; instead, they rely only on derivative information, thus on the gradient in the first-order case. I will give an overview of the main OFFO methods, focusing on adaptive algorithms such as Adagrad, Adam, RMSprop, ADADELTA, which are gradient methods that share the common characteristic of depending only on current and past gradient information to adaptively determine the step size at each iteration. Next, I will briefly discuss the most popular pruning approaches. As the name implies, pruning a model, typically a neural networks, refers to the process of reducing its size and complexity, typically by removing certain parameters that are considered unnecessary for its performance. Pruning emerges as an alternative compression technique for neural networks to matrix and tensor factorization or quantization. Mainly, I will focus on pruning-aware methods that uses specific rules to classify parameters as relevant or irrelevant at each iteration, enhancing convergence to a solution of the problem at hand, which is robust to pruning irrelevant parameters after training.Finally, I will introduce a novel deterministic algorithm which is both adaptive and pruning-aware, based on a modification Adagrad scheme that converges to a solution robust to pruning with complexity of $\log(k) \backslash k$. I will illustrate some preliminary results on different applications.
Gennaio
dal giorno
06/01/2025
al giorno
10/01/2025
06/01/2025
al giorno
10/01/2025
Roberto Frigerio
Relazione all'interno del convegno: Hyperbolic Manifolds, Their Submanifolds and Fundamental Groups
Seminario di algebra e geometria
Constructing higher degree non-trivial bounded coho-
mology classes is a very challenging task. For surface groups and
free groups, bounded cohomology is very rich in degree 2 and 3,
and a natural question is whether one can build non-trivial classes
in higher degrees by taking the cup product of lower-dimensional
classes. For hyperbolic manifolds, there exists a well defined map
Ψ• associating to every closed differential form a bounded coho-
mology class via integration over straight simplices. Classes in the
image of this map are usually called De Rham classes, and, in de-
gree 2, they span an infinite-dimensional subspace of the bounded
cohomology space of the manifold.
We prove that, in suitable degrees, Ψ• is a homomorphism of al-
gebras, i.e. it sends the wedge product of closed differential forms to
the cup product of the associated bounded cohomology classes. As a
corollary, the cup product of two De Rham classes vanishes, provided
that its degree exceeds the dimension of the manifold. This result
complements several recent vanishing results for the cup product of
De Rham classes.