Questo sito utilizza solo cookie tecnici per il corretto funzionamento delle pagine web e per il miglioramento dei servizi.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy.
Proseguendo la navigazione del sito acconsenti all'uso dei cookie.
Archivio 2026
Febbraio
02
2026
Angela ALBANESE
Seminario di analisi matematica
Febbraio
02
2026
Ferruccio COLOMBINI
Seminario di analisi matematica
Febbraio
02
2026
Daniele DEL SANTO
Seminario di analisi matematica
Febbraio
02
2026
Francesco FANELLI
Seminario di analisi matematica
Febbraio
02
2026
Nicolas LERNER
Seminario di analisi matematica
Febbraio
02
2026
Luigi RODINO
Seminario di analisi matematica
Febbraio
02
2026
Michael RUZHANSKY
Seminario di analisi matematica
Febbraio
02
2026
Toru OZAWA
Seminario di analisi matematica
Febbraio
02
2026
Claudia GARETTO
Seminario di analisi matematica
Gennaio
29
2026
Nicola Fusco (Università di Napoli Federico II)
nel ciclo di seminari: MATEMATICI NELLA STORIA
Seminario di analisi matematica, interdisciplinare, storia della matematica
Mai come in Caccioppoli la vicenda umana e quella scientifica si sono intrecciate in modo così profondo che non si può capire il senso dell’una senza comprendere l’altra. Nel seminario si cercherà di raccontare i momenti più intensi ed esaltanti di entrambe e quelli più sofferti, dall’inizio fino al tragico epilogo.
Gennaio
27
2026
Gianni Pagnini
Seminario di fisica matematica
We study a general continuous-time random walk (CTRW), by including non-Markovian cases and Lévy flights, under complete stochastic resetting to the initial position with an arbitrary law, which can be power-lawed as well as Poissonian. We provide three linked results. First, we show that the random walk under stochastic resetting is a CTRW with the same jump-size distribution of the non-reset original CTRW but with a different counting process. Later, we derive the condition for a CTRW with stochastic resetting to be a meaningful displacement process at large elapsed times, i.e. the probability to jump to any site is higher than the probability to be reset to the initial position, and we call this condition the zero-law for stochastic resetting. This law joins with the other two laws for reset random walks concerning the existence and the non-existence of a non-equilibrium stationary state (NESS). Finally, we derive master equations for CTRWs when the resetting law is a completely monotone function. The talk is based on: Colantoni & Pagnini, Proc. R. Soc. A, 481, 20250641 (2025).
This seminar is scheduled in the framework of the PRIN 2022 project "The mathematics and mechanics of nonlinear wave propagation in solids" (CUP J53D23002350006, MUR code: 2022P5R22A_003; local team responsible investigator: Prof. Mentrelli).
Gennaio
27
2026
Gianni Pagnini
Seminario di fisica matematica
We study a general continuous-time random walk (CTRW), by including non-Markovian cases and Lévy flights, under complete stochastic resetting to the initial position with an arbitrary law, which can be power-lawed as well as Poissonian. We provide three linked results. First, we show that the random walk under stochastic resetting is a CTRW with the same jump-size distribution of the non-reset original CTRW but with a different counting process. Later, we derive the condition for a CTRW with stochastic resetting to be a meaningful displacement process at large elapsed times, i.e. the probability to jump to any site is higher than the probability to be reset to the initial position, and we call this condition the zero-law for stochastic resetting. This law joins with the other two laws for reset random walks concerning the existence and the non-existence of a non-equilibrium stationary state (NESS). Finally, we derive master equations for CTRWs when the resetting law is a completely monotone function. The talk is based on: Colantoni & Pagnini, Proc. R. Soc. A, 481, 20250641 (2025).
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Sebastian Jaimungal
Equilibrium Liquidity and Risk Offsetting in Decentralised Markets.
Seminario di finanza matematica
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Andrea Canidio
Becoming Immutable: How Ethereum is Made
Seminario di finanza matematica
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Fayçal Drissi
The macroeconomics of liquid staking
Seminario di finanza matematica
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Christof Ferreira Torres
To Spam or Not to Spam: The Rise of Speculative MEV Bots
Seminario di finanza matematica
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Antonio Russo
DeFi and Crypto-Assets under the MiCA Framework: New Frontiers and Challenges for Financial Supervision
Seminario di finanza matematica
Gennaio
dal giorno
26/01/2026
al giorno
28/01/2026
26/01/2026
al giorno
28/01/2026
Michele Treccani
Token issuance in PoS Networks: where Security meets Economic Sustainability
Seminario di finanza matematica
Gennaio
23
2026
Nicola Bertoni
Seminario di analisi matematica, fisica matematica
In this talk, I discuss the spectral properties of Weyl quantizations of complex-valued symbols on the torus subject to small perturbations given by random potentials. In the semiclassical regime, I show that the eigenvalues of the perturbed operators satisfy a Weyl law with probability tending to one. This extends similar results for non-self-adjoint operators under random perturbations.
Gennaio
22
2026
Lothar Reichel
Seminario di analisi numerica
We are concerned with the solution of linear operator equations with a compact operator. These operators do not have a bounded inverse and therefore thes equations have to be regularized before solution. The Arnoldi process provides a convenient way to reduce a compact operator to a nearby operator of finite rank and we regularize with Tikhonov's method. This talk discusses properties of this simple solution approach. This is joint work with M. Kuian and R. Ramlau.
Gennaio
21
2026
Gennaio
19
2026
Giuseppe Antonio Recupero
Seminario di analisi numerica
The p-Laplacian is a non-linear generalization of the Laplace operator. A discrete version of
p-Laplacian, the graph p-Laplacian, has been successfully used in various applications, including data clustering, dimensionality reduction and other tasks, since non-linearity better captures the underlying geometry of the data.
In this work we present a novel iterative computational approach to find the p-Laplacian
eigenpairs which extends the inverse shifted power method, a standard numerical technique
to find specific eigenvalues/eigenfunctions to the nonlinear p-Laplacian operator. This involves solving a related nonlinear problem at each step using quasi-Newton method with Broyden’s update. By varying the parameter σ in a suitably defined range, the method converges to the spectrum of the p-Laplacian, for 1 < p < +∞. This reveals a continuous
deformation of the classical 2-Laplacian eigenfunctions, with modified sharpness, but also
gives rise to novel eigenfunctions with distinct geometric profiles.
The accuracy of the results is measured via Orthogonal Least Square method, which also
returns the estimated eigenvalues.
Gennaio
19
2026
Matteo Casarosa
nell'ambito della serie: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario interdisciplinare
In this talk, we discuss the \mathcal{G}_0 dichotomy, an important result in descriptive combinatorics, and present negative results in the context of generalized descriptive set theory. This is joint work in progress with Philipp Schlicht.
Gennaio
12
2026
I will introduce a continuous time probabilistic model for systems of interacting and spiking neurons. In this process, neurons spike at a rate depending on their membrane potential value. When spiking, they have a direct influence on their post-synaptic partners, namely, a fixed value, called "synaptic weight", is added to the potential of the postsynaptic neurons. In between successive spikes, due to some leakage effects, the membrane potential process follows a deterministic flow.
Firstly, I will discuss the construction, well-posedness and the longtime behavior of the process, for a finite number of neurons and for infinite systems of neurons, both in the case with and without reset of the spiking neuron.
I will then discuss mean field limits for the Hawkes description (without reset) of the model. In particular we will see how in the limit an ODE describing the evolution of the mean firing rate appears and how this approach allows to describe for example oscillatory behavior. If time permits, I will also discuss the influence of delay in the synaptic transmission and quickly speak about short term memory.
The final part of the course will be devoted to the more difficult case with reset (the membrane potential of the spiking neuron goes back to a resting value, inducing discontinuities in the model). We will see how the limit process and its longtime behavior help us to explain important phenomena in neuroscience such as "metastability".
Gennaio
12
2026
Roberto Conti
nel ciclo di seminari: SEMINARS IN MATHEMATICAL PHYSICS AND BEYOND
Seminario di fisica matematica, interdisciplinare
TBA
Gennaio
12
2026
We will explore recent advances concerning nonlinear diffusion processes in the sense of McKean-Vlasov, and their connections to partial differential equations (PDEs) defined on the Wasserstein space, that is, the space of probability measures with finite second order moment. We will discuss recent results on the well-posedness - both in the weak and strong sense - of McKean-Vlasov stochastic differential equations (SDEs) driven by Brownian motion and/or jump processes. These results extend beyond the classical Cauchy-Lipschitz framework.
In the Brownian setting, we will describe the regularization effect of the noise, notably the existence and smoothness of the transition density - particularly in the measure argument - under uniform ellipticity assumptions. These smoothing effects are crucial for establishing the existence and uniqueness of solutions to the Kolmogorov-type PDEs posed on the Wasserstein space, even in the presence of irregular terminal conditions and source terms.
Such infinite-dimensional PDEs play a central role in deriving quantitative propagation of chaos estimates for mean-field approximations via interacting particle systems. Finally, we will discuss the numerical approximation of these equations using the Euler-Maruyama time discretization scheme.
Gennaio
12
2026
Juan Luis Gonzáles-Santander
Seminario di fisica matematica
TBA
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Mirko Mauri
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Brendan Hassett
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Sho Tanimoto
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Ariyan Javan Peykar
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Junliang Shen
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Alessio Sammartano
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Boaz Moerman
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Annalisa Grossi
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
Given an involution on a complex variety, the Smith-Thom inequality says that the total \mathbb{F}_2-Betti number of the fixed locus is no greater than the total \mathbb{F}_2-Betti number of the ambient variety. The involution is called maximal when the equality is achieved. On a Hyper-Kähler manifold X a holomorphic or a anti-holomorphic involution is referred to as a brane involution. While examples of non-compact hyper-Kähler manifolds admitting maximal branes are known, the compact case is more intriguing. In particular, although there exist some K3 surfaces admitting maximal brane involutions, the main result that I will show you is the non-existence of maximal branes on Hyper-Kähler manifolds deformation equivalent to the Hilbert scheme of points on a K3 surface. This talk is based on a joint work with S. Billi, L. Fu and V. Kharlamov.
Gennaio
dal giorno
11/01/2026
al giorno
17/01/2026
11/01/2026
al giorno
17/01/2026
Claudio Onorati
Relazione all'interno del convegno: Geometry, arithmetic & cohomology of higher dimensional varieties
Seminario di algebra e geometria
I will report about my recent joint work with Angel Rios Ortiz on the SYZ conjecture for a special class of singular symplectic varieties. The SYZ conjecture predicts that nef and isotropic line bundles are associated to lagrangian fibrations. After having recalled some generalities about symplectic varieties and the SYZ conjecture, I will state the main result and explain the main ideas behind its proof.